
 Procedia Computer Science 16 (2013) 265 – 274

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology
doi: 10.1016/j.procs.2013.01.028

Conference on Syst
Eds.: C.J.J. Paredis, C. Bishop, D. Bodner, Georgia Institute of Technology, Atlanta, GA, March 19-22, 2013.

Dependency Analysis of System-of-Systems Operational and
Development Networks

Cesare Guarinielloa,*, Daniel DeLaurentisa
aPurdue University, 701 West Stadium Avenue, West Lafayette, IN 47907, USA

Abstract

In this research, a Dependency Network Analysis technique has been adapted to assess operability, reliability, and resilience in
both operational and development networks, associated with System of System architectures.
The architecture is modeled as a directed network where nodes represent either the component systems or the capabilities to be
acquired. Links on the network represent various kinds of dependencies between the constituent systems: functional dependency
in an operational network, sequential development dependency in a development network. Each dependency is characterized by
strength and criticality. The ultimate goal of the technique seeks to analyze effects of such dependencies -and of their strength
and criticality- on operability, and to identify valid operating and developing strategies and architectures. For operational
networks, Functional Dependency Network Analysis is used to assess the effect of topology and of possible degraded functioning
of one or more systems on the operability of the network. For development networks, Development Dependency Network
Analysis is used to assess how development time or capabilities are affected by the network topology and by delays in the
development of component systems.
Each technique is evaluated with regard to amount and quality of necessary input, completeness and usefulness of results, and
applicability to problems of diverse nature.

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology.

Keywords: dependencies; network; operability; development; SoS.

1. Introduction

The challenge of analyzing and architecting Systems-of-Systems (SoS) is very tough, not only due to complexity
and size: dependencies between component systems are what most affect the behavior of the whole structure. Maier
[1] defines SoS as a collection of systems that must have two features: its components must be able to operate
independently by the whole system and they do operate independently, being managed at least in part for their own
purpose. Since the elements are designed and developed independently, the aggregate emerges only through
interaction of components. Also DeLaurentis and Callaway [2], when describing their proposed definition for a

* Corresponding author. Tel.: +1-765-490-1939.
E-mail address: cguarini@purdue.edu.

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of Georgia Institute of Technology

266 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

complex system and a SoS, underline the dependency of functionality on linkages between components in a SoS.
Another feature of SoS is emergence ([1], [3]): SoS can show qualities that are irreducible to the constituent parts
([4]), and depend on how the component systems interact. Emergent behavior is what cannot be predicted through
analysis at any levels simpler than that of the system as a whole ([5]). In [6], emergent behaviors are defined as
characteristics that arise from the cumulative actions and interactions of the constituents of a SoS, and emergence
can be used to develop flexible and robust SoS. Such definitions of emergent behavior will be used in this paper.

System engineers struggle with complex dependencies between systems and between capabilities to be achieved,
in both development and operational relationships. A development relationship means that the development of a
certain system is dependent from the development of another, but this relationship not necessarily affects their
functioning. Instead, an operational relationship means that a certain system needs input (data, material, energy)
from another system to operate. A brief historical survey of the use and definition of SoS by government agencies
shows that such systems are usually not formally designed, planned or dealt with as SoS: instead, solutions are
usually found for the specific problem of interest [7].

The conclusion of such considerations is the need for general design methods, guidelines, analysis techniques,
and metrics to support decision making in different SoS contexts at different levels. Such tools should address
complexity, and above all they should account for the importance of dependencies between systems and between
requirements, and the consequent emergent behavior.

1.1. Dependency Network Analysis

In this research, a technique has been adapted, with the goal of assessing the impact of dependencies in a SoS.
The architecture of SoS has been modeled as a directed network. The nodes represent either the component systems
or the capability to be acquired. Accordingly, the links represent the dependencies between the systems or between
the capabilities. Each dependency is characterized by strength and criticality, that affect the behavior of the whole
SoS in different ways: strength of dependency accounts for how much the behavior of a system is affected by the
behavior of a predecessor system, while criticality of dependency quantifies how the functionality of a system is
degraded when a predecessor system is experiencing a major failure.

The Dependency Network Analysis technique has been first applied to operational networks based on the
Functional Dependency Network Analysis (FDNA). As in the original formulation by Garvey and Pinto ([8], [9]),
this method is used to evaluate the effect of topology, and of possible degraded functioning of one or more systems
on the operability of each system in the network. To adapt the technique to SoS analysis, a term has been added to
account for possible degraded functioning of any component system due to its own malfunctions (the formulation in
[8] represents only malfunctions in nodes that do not depend by other nodes). Further novelty presented in this paper
is the test of stochastic analysis with FDNA, involving a probability distribution for the operability of the systems.
FDNA technique identifies the most critical nodes in the network, as well as the most important dependencies.
Comparison of different architectures can be performed, by assessing the operability of the systems. The resilience
of a SoS can be evaluated in terms of capability to reduce the loss of operability when single systems are affected by
partial failures. Further analysis can be executed to assess the benefits of adding or removing systems.

Finally, a new technique, the Development Dependency Network Analysis (DDNA), has been proposed and
tested, and preliminary results of analysis of dependencies in a development network are reported. DDNA borrows
the concepts of strength and criticality of dependencies from FDNA, and uses a network representation of the
dependencies, as in Program Evaluation and Review Technique (PERT) and Critical Path Method (CPM). DDNA is
used to assess how development time or capabilities are affected by the network topology and by possible delays in
the development of component systems.

2. Functional Dependency Network Analysis

2.1. The method

In FDNA, the SoS is represented as an operational network, with the nodes being component systems or

267 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

capabilities to be achieved. The links represent a dependency of the operability of a node (successor node) from
another (predecessor node).

Fig. 1. Operational dependency of node Nj from node Ni

The o
currently operating, or the level at which the desired capability is being currently achieved. Operability, ranging
between 0 and 100, can be related to performance by means of an input function. In the example in fig. 2, a
planetary probe communication system is evaluated based on the number of valid data downlinks per week
(performance), with its operability (effectiveness) being 100 when the system performs 1000 valid data downlinks
per week, and the degraded operability being 25 when the system performs 380 valid data downlinks per week.

Fig. 2. Correlation between Performance and Operability of a system.

Using this relationship, the operability of root nodes, i.e. nodes that have no predecessors, can be evaluated based
on their current performance. FDNA analysis, then, allows for the computation of successor nodes operabilities,
which can in turn provide a value for the nodal performance. In this paper, the function relating performance and
operability is assumed to be a given input, and the method is described on the basis of the operability.

Further input is required:
for each node Ni, a self-effectiveness level SEi is needed, ranging between 0 and 100. For root nodes, this is just

the operability; for nodes that have at least one predecessor, the self-effectiveness is the level of operability that the
node would have, if it were a root node: therefore, the self-effectiveness assess the current status of a node, not
accounting for its dependencies.

For each link, two values are needed. The strength of dependency (SOD) between node Ni and node Nj ij, and
the criticality of dependency (COD) between node Ni and node Nj ij ij must be between 0 and 1, and can be
evaluated as the fraction of the operability level of node Nj due to the dependency by node Ni. For example, if the
operability level of node Nj (working at self- ij ij must be
comprised of values between 0 and 100, and it can be evaluated as the maximum level of operability reachable by
node Nj, when the operability of node Ni is 0. A ij corresponds to a higher criticality of dependency.

Fig. 3. A small network, showing the required input for FDNA

According to the method proposed in [8], the operability of root nodes is simply their self-effectiveness:

Oi = SEi (1)

Ni Nj

Predecessor

Successor

N1

N3

Predecessors Successor

N2

SE1

SE2
SE3

13 13

23 23

Operability
(Effectiveness)

Performance (valid
downlinks per week)

100

25

380 1000

268 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

The operability of nodes that have at least one predecessor is computed as the minimum of two terms, one
depending on the SODs, one depending on the CODs:

Oj = min(SOD_Oj, COD_Oj) (2)

For a node Nj having n predecessors, the two terms are computed according to equations 3-6:

SOD_Oj = Average (SOD_Oj1, SOD_Oj2 jn) (3)

SOD_Oji ijOi + (1- ij)SEj (4)

COD_Oj = Min (COD_Oj1, COD_Oj2 jn) (5)

COD_Oji = Oi ij (6)

The term accounting for SOD is the average operability values of node Nj, computed for each dependency from a
predecessor node Ni, thus reflecting the relationships between the n predecessors and the node Nj. The term
accounting for COD is the minimum of the values of the operability of node Nj computed for each dependency from
a predecessor node Ni, thus precisely reflecting the importance of the most critical dependency.

Using equations 1-6, the operability of each node can be sequentially computed, starting from the root nodes, in a
breadth-first way: after the roots, nodes directly depending from the root are analyzed, and so on.

2.1. Application to a simple example of Aerospace SoS

To assess the value and applicability of FDNA for SoS, the method is applied to a simple five-node aerospace
network (fig. 4).

Fig. 4. (a) the five-node aerospace SoS; (b) the same SoS represented as a network, with the required input for FDNA: self-effectiveness of each
node, and COD and SOD of each link.

The network includes ground facilities (N1), two satellites (N2 and N4), a UAV (N3), and a ship (N5). The links
represent communication and data dependencies for location: the satellites and the UAV need data from the ground
facilities, the UAV also uses the satellites for navigation, and the ship gets data from the UAV and from one of the
satellites. The input can be given in form of a vector for the self-effectiveness, and two matrices containing the

ij ij (nonzero entries in the SOD matrix correspond to dependencies in the network).

SE = [SE1 SE2 SE3 SE4 SE5]

2.1.1. Deterministic analysis

In this kind of simulation, different values for the self-effectiveness, i.e. degraded operability of system, are fed
into the equations, to compute the actual operability of each system. Table 1 shows the results of degraded

SOD =

00000
75.0045.000
85.00000
005.000
045.07.045.00

COD =

00000
2003500
300000
003500
05530550

N4

(0.45, 55)
(0.7, 30)

(0.45, 55)

(0.75, 20)

(0.85, 30)

(0.5, 35)
(0.45, 35)

N1

N2
N3

N5

SE4

SE1

SE2

SE3 SE5

269 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

operability (level of operability equal to 75 or to 25) in a single system.

Table 1. Degraded self-effectiveness in single systems. O=operability of the nodes

Self-effectiveness [N1 5] O1 O2 O3 O4 O5

[75 100 100 100 100] 75 88.75 90.60 88.75 91.79
[25 100 100 100 100] 25 66.25 55 66.25 68.22
[100 75 100 100 100] 100 86.25 97.71 100 99.03
[100 25 100 100 100] 100 58.75 93.13 100 97.08
[100 100 75 100 100] 100 100 87.5 100 95.22
[100 100 25 100 100] 100 100 66.25 100 85.66
[100 100 100 75 100] 100 100 97.94 86.25 93.97
[100 100 100 25 100] 100 100 93.75 58.75 78.75
[100 100 100 100 75] 100 100 100 100 95
[100 100 100 100 25] 100 100 100 100 85

Analysis of these results give good insight into the influence of dependencies into such network: first of all, the

five-node SoS appears to have high resilience in these cases: any single failure that degrades the operability of a
system down to 25, can at most degrade the operability of the ship down to 68.22. The second result from FDNA
analysis is the identification of the most critical nodes, in this case nodes N1 and N4 most affect the operability of
other nodes. While some result is anticipated (for example, since there is a path from node N1 to any other node, its
influence is expected), other behaviors are captured by FDNA. For instance, node N4 shows positive criticality for
what concerns the dependency of node N5: when the satellite N4 is working at level 100, the operability of the ship is
never lower than 85, even if other systems influencing N5 are degraded. Finally, FDNA allows more complex
analysis, based on the output of interest: for example, it can be noted that, if the operability of the ship is the object
of the evaluation, highly degraded operability of node N3 is worse than highly degraded operability of node N2; if
instead the global operability of the network, computed as the sum of the operability of each node, is the measure of
interest, highly degraded operability of node N3 gives better results than highly degraded operability of node N2
(noticeably, this is not true if the operability decreases to 75. This is due both to the CODs and SODs, and to the
topology, sources of complexity in the network. To better catch these details, stochastic analysis can be performed).

2.1.2. Stochastic analysis

A more realistic view of the behavior of a SoS as a function of the dependencies between the component systems
can be achieved by means of a stochastic analysis with the FDNA technique. This kind of analysis is useful to
capture and summarize all the aspects related to SOD and COD, as well as to topology, in a few probability
distributions (as reported above, such details are spread in the tables for deterministic FDNA). Since the five-node
network is very small, a Monte Carlo simulation has been executed.

The computation of the expected value for the operability of a system gives a measure of the resilience of such
system to failures of the predecessors, while the variance evaluates the sensitivity of the system to failures of the
predecessors. Differently from the deterministic analysis, this evaluation is not based on the simulation of single
instances (that could for example neglect some COD), but it accounts for any possible combination of the effects of
COD, SOD, and topology. The capability of this kind of analysis to capture behavioral patterns and features of a
whole architecture makes it suitable to be used as a decision tool.

The analysis confirmed that the systems in the five-node network are resilient to single failures in the
predecessors, with a probability distribution shifted towards high values of operability (fig. 5a).

The complexity of the interdependencies between systems, resulting in more complex behavior, arises even if
only two system experience a degraded operability in the simple five-node network, as shown in fig. 5b.

270 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

Fig. 5. Probability distribution for the operability in the ff five-node system. (a) single failure in node N1, beta probability distribution for self-ff
effectiveness of node N1; the probability distribution of S2 coincides with that of S4; (b) failure in nodes N1 and N4, with independent uniform
distribution: node N3 is in this case more resilient than node N5, differently from what appears in 5a

2.2. Example of greater complexity

An additional scenario is executed using a more complex twelve-node network (fig. 6), with three ground
facilities (N1, N2, N3), two satellites (N4, N5), two UAVs (N6, N7), a ship (N8), an airplane (N9), and three nodes
corresponding to desired capabilities: long range detection (N10), short range detection (N12), and rescue (N11). The
results further demonstrate the power of FDNA in comparing different architectures, as well as the result of removal
of nodes or dependencies from a system. Four deterministic tests are reported and results are shown in table 2.

Interesting outcomes have been achieved, showing unexpected behavior and patterns not directly predictable
through the knowledge of the component systems, that is one of the definitions of emergence in the SoS. If node N7,
i.e. one of the UAVs, is removed from the SoS (meaning that the short range observation is based only on the ship
and the airplane), when node N1 has degraded self-ff effectiveness, the operability of node N11 unexpectedly increases.
The operability of node N12, instead, slightly decreases when nodes N1, N5, or N8 are self-ff effective at level 20, but
node N12 is not anymore affected by degraded self-ff effectiveness of node N2. Therefore, such architecture could be
preferable if nodes N1 and N2 is prone to failures.

Fig. 6. The twelve-nodes SoS

When the dependency of node N9 on node N8 is removed, the operability of nodes N11 and N12 globally increases.
Noticeably, if node N9 is having a degraded self-ff effectiveness, its dependency from a single node (N3) gives a high
operability, resulting in better operability of nodes N11 and N12.

Finally, a small architecture change has been tested: node N5 is dependent from node N2 instead than N1, and
node N6 is dependent from node N1 instead than N2. This new architecture gives lower operability in some case, but

(0.4, 50)

(0.3, 50) (0.7, 20)

(0.35, 50)

(0.6, 30)

(0.5, 20)
(0.8, 10)

(0.7, 25)

(0.3, 60)

(0.5, 20)

(0.2, 35)

(0.3, 50)

(0.7, 10) (0.85, 15)

(0.5, 40)

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N11

N12

271 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

it can be noticed that node N10 has a smoother behavior, with the operability being the same for degraded self-
effectiveness of nodes N1 and N2. The architecture can then be evaluated based on the importance of the requested
capabilities (N10, N11, N12), and on the probability of failures of N1 and N2.

Table 2. Twelve-node SoS experiment: indicated system is having a self-effectiveness of 20 (single failure in other systems gave the same results
for all the experiments), while all other systems have self-effectiveness equal to 100

Test O10, O11, O12 (N1=20) O10, O11, O12 (N2=20) O10, O11, O12 (N5=20) O10, O11, O12 (N8=20) O10, O11, O12 (N9=20)

Basic network 79, 96.36, 98.59 100, 75, 70 69, 93.2, 97.37 100, 54, 91.23 100, 96.5, 79

Node removal 79, 97.25, 97.89 100, 75, 100 69, 93.2, 96.05 100, 54, 86.84 100, 96.5, 79

Link removal 79, 97.45, 99.1 100, 75, 70 69, 93.2, 98.32 100, 54, 94 100, 98.5, 91

Diff. architecture 89.5, 75, 100 89.5, 92.6, 70 69, 93.2, 97.37 100, 54, 91.23 100, 96.5, 79

3. Development Dependency Network Analysis

A Development Dependency Network Analysis (DDNA) method, based on the concepts of SOD and COD from
FDNA, is developed. It is applied to development SoS networks, where the links, like in PERT [10], represent
development dependencies between systems. The outcome of such analysis is the beginning time and the completion
time of the development of each system, as well as an assessment of the combined effect of multiple dependencies
and possible delays in the development of predecessors. As in FDNA, this method evaluates the most critical nodes
and dependencies, and can be used to compare different architectures in term of development time. Also, if some of
the nodes are capabilities to be achieved, the method assess the time, or the expected time, in probabilistic analysis,
by which each capability is available. The method has been developed to also account for the possibility of
measuring partial capabilities attained during the development of a SoS.

3.1. The method

Compared to existing methods, such as PERT/CPM [10], DDNA provides more specific insight into the effects
of multiple and diverse dependencies on the development of SoS. These include:
 The strength of dependency affects both the beginning time and the completion time of development of a system.

Differently from PERT, development of a system can start before a predecessor is complete, if the dependency
has not reached criticality. Therefore, a more realistic analysis of development time is achieved. Above all, this
feature allows DDNA to assess partial capabilities during the development of a SoS.

 COD affects the beginning time in the same way as in PERT/CPM: a successor must wait until a critical
predecessor is complete to begin development. Instead SOD results in a less absolute dependency.

 Differently from FDNA (where performance is related to operability), in DDNA time is directly used into the
computation, and the level of performance constitutes an assessment of the quality of the development (for
example, three weeks could be the best time for a system, ten weeks could be the worst, but eight weeks could
correspond to a satisfaction of 50%).

In DDNA, each node requires three pieces of input data: the minimum independent time (MINIT), that is the
minimum duration of development of the system; the maximum independent time (MAXIT), that is the maximum
duration of development of the systems; the self-effectiveness (SE) that linearly evaluates how much the system is
close to being developed with its minimum duration time, without accounting for dependencies. If SE=0, then the
independent duration of development is equal to MAXIT. If SE=100, then the independent duration of development
is equal to MINIT. Due to dependencies, the actual time to develop a system can be longer than MAXIT (but in this
case the system must have begun its development before the completion of a predecessor, thus resulting in earlier
partial capabilities), whereas it can never be shorter than MINIT.

Each link requires two input data: the strength of dependency (SOD) and the criticality of dependency (COD).
The SOD evaluates how much a system can begin its development before the completion of the predecessor, it
constitutes a parameter for the parabolas shown in fig. 7a. This shape has been chosen because it results in
anticipated development for systems depending from a node with medium-high SE, while no early development is

272 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

allowed when the predecessor is being developed either in its best time, or with a SE below the critical threshold. In
future research, these curves will be compared to data from industrial projects and consequently adapted.

Fig. 7. (a) the dependency between node Ni and node NjN . If SEi is lower than CODij, then the beginning time of NjN coincides with the completion
time of Ni. Otherwise, the development of NjN can begin earlier: the blue line relates SEi to the completion time of Ni (coincident with the
beginning time of NjN when SODij=1). The yellow, red, and green parabolas correspond respectively to SODij=0.7, SODij=0.3, SODij=0; (b)
Multiple dependency of N3 from N1 and N2 in a Gantt diagram fashion. Blue lines are the beginning times, red lines are the completion times
(dotted=due to single dependency, continuous=actual times due to multiple dependency)

The COD is the minimum level of SE of the predecessor that allows an early development of the successor. If the
SE of the predecessor is lower than the COD, then the successor must wait until the predecessor is fully developed.
Higher COD corresponds to higher criticality.

For root nodes Ni, the beginning time (BTi) is 0, and the actual completion time (CTi) is computed as

CTiTT = MINITiTT + (100-SEi)ii (MAXITiTT -MINITiTT)/100TiiTT (7)

That is, depending on its SE. For nodes having a single predecessor, the beginning time is computed according to
the function shown in fig. 7a: if SEi < CODij, then BTjT =CTi. Otherwise, BTjT is computed as

BTjTT = a SEi
2 + (-((a (100+CODij)+(Bjj -D)/(100-CODij)) SEjj i+(100 D-B CODij)/(100jj -CODij)+100aCODjj ij (8)

Where B is the minimum actual completion time for node Ni, D is the completion time of node Ni corresponding
to CODij, and a is equal to (1-SODij) (D-B)/(100-CODij)2. This formulation corresponds to the parabolas in fig. 7a,
and guarantees that node NjN cannot have a beginning time lower than the minimum completion time of node Ni.

Given a development time of node NjN equal to

DTjTT = MINITjTT + (100-SEjE)jj (MAXITjTT -MINITjTT)/100TjjTT (9)

that is a linear relationship between the SE of a node and its development time, the completion time is

CTjTT = Max(BTjTT + DTjTT , jj CTiTT + SODij DTjTT)TjjTT (10)0

The first term is the completion time that node NjN would have starting at BTj and not having any dependency
from Ni. However, the development time, added to the anticipated beginning time, could result in the successor node
NjN being fully developed before the completion of the predecessor node Ni. Therefore, the second term accounts for
this dependency, stating that node NjN cannot complete its development before a certain amount of time after the
completion of node Ni elapses (this amount of time being dependent on SODij and development time of NjN).
Equations 9 and 10 are also used to compute the minimum and the maximum completion time for node NjN .

For nodes having multiple predecessors, the beginning time is computed as the average of the beginning times
given by each dependency. Even if a node has got a critical dependency from one or more predecessors, it can still
begin its development based on the dependency from other nodes. Criticality, however, affects the completion time.
Using the average, instead than the minimum, prevents a single predecessor from critically influence the beginning
time. The completion time is the maximum of the completion times given by each dependency.

N1

N2

N3

timeCODij

273 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

3.2. Preliminary results of the method

The method has been tested with simple networks to get an insight into the result attainable through this analysis.
A deterministic analysis of a five-node network is reported in table 3 (matrices for the network are stated below).

Table 3. Preliminary results with DDNA method. BT=Beginning Time. CT=Completion Time

Self-effectiveness BT1 CT1 BT2 CT2 BT3 CT3 BT4 CT4 BT5 CT5

[100 100 100 100 100] 0 7 0 10 8.5 16 0 5 10.5 24

[20 100 100 100 100] 0 11 0 10 10.7 17.4 0 5 11.2 25.4

[100 20 100 100 100] 0 7 0 18 12.5 24 0 5 14.5 32

[100 100 20 100 100] 0 7 0 10 8.5 25.6 0 5 16.74 36.48

[100 100 100 20 100] 0 7 0 10 8.5 16 0 13 14.56 24

[100 100 100 100 20] 0 7 0 10 8.5 16 0 5 10.5 33.6

[10 10 100 100 100] 0 11.5 0 19 15.25 25 0 5 15 33

[90 10 100 10 100] 0 7.5 0 19 13.19 25 0 14 19.5 33

Various observations can be done even with this few results: for example, the high SOD between nodes N4 and

N5, and N3 and N5 causes N5 to have a longer development than N3, even when N3 starts to be developed later. Also,
the capability of the SoS to partially recover from delays is evident, above all when delays strike the root nodes, and
successor nodes have low SOD (so they can begin their development, adding partial capability to the overall SoS).
In PERT/CPM analysis, a delay on a critical path would never be recovered, nor the analysis would account for the
possibility that the System-of-System could be partially developed in the meantime.

4. Conclusions and future work

4.1. Applicability of the methods and quality of results

In this paper, two methods for the analysis of the effect of dependencies between the components of a SoS have
been presented. Functional Dependency Network Analysis is applicable to operational networks, and Development
Dependency Network Analysis is applicable to development networks. FDNA quantifies the effect of the
dependencies on the operability, and DDNA quantifies the effect of the dependencies on the development time. Both
techniques can identify the most critical nodes and dependencies, and their effect on the operability or development
of successor nodes, and can compare different architectures. The analysis can be deterministic or probabilistic, and
be used to analyze specific or global operability and development behavior. The relationship between performance
and operability (or performance and time), and the use of a graph description allows these methods to deal with
problems of different nature and various fields of application: for example, complex aerospace systems, design
schedule, industrial production, social relationships can be analyzed by FDNA and DDNA. However, even if both
methods are generally applicable to any SoS that can be represented by an operational or development network,
virtual SoS (meaning that each component systems is completely independent and is not even partially designed
according to the goals of the entire SoS), especially if asynchronous, are hard to treat with such methods, since the
SOD and COD of the dependencies would be difficult to evaluate, and could change over time.

Both methods are being developed as part of research for the Department of Defense. The aim is to assess the
effects of dependencies in SoS and to create analysis and decision tools specific to this kind of system. Those tools
are required to account for typical traits of SoS: complexity, size, partial autonomy in development and operability

208
155
186
2010
127

],[MAXITMINIT

00000
9.00000
5.00000

001.000
007.000

SOD

00000
300000
500000
002000
004000

COD

274 Cesare Guariniello and Daniel DeLaurentis / Procedia Computer Science 16 (2013) 265 – 274

of the component systems, emergent behavior caused by the complex relationships between the systems.
Output of FDNA and DDNA gives a detailed insight into the effects of dependencies, underlining unintuitive

emergent behavior of the SoS, as described in the examples. FDNA can quantify the resilience of a SoS, and
evaluate different architectures with respect to their operability when degraded functionality arises. DDNA uses the
properties of dependencies (strength and criticality) to assess the development time, and the effect of delays on the
development, more realistically than PERT/CPM. When criticality is not reached, partial development of a system
can begin before a predecessor is complete. DDNA is able to capture the capability of a network to absorb a delay
even along the critical path and is also suitable to assess partial capabilities available during the development of a
SoS. However, both methods require many input data: strength and criticality of each dependency in the networks
has to be evaluated (by experts, or getting data from simulations, or just using reasonable values), as well as the
possible shape of the network. For DDNA, the minimum and maximum development time for each system are
further required inputs.

4.2. Future work

Potential future work will address the following:
 FDNA analysis has to be tested with larger networks, featuring complex interdependencies between component

systems; the results can be compared to those of other analysis techniques and metrics, looking for patterns and
characteristics relating the features of nodes, links, and architecture of networks (like degree, centrality, weights)
to the outcomes of FDNA.

 DDNA analysis is very promising: different shapes for the functions relating the development time of dependent
systems can be tested. Also, DDNA will be directly compared to PERT/CPM analysis. Stochastic analysis,
though very complex, can be added to this method, in the same way as it has been executed in FDNA. However,
the two most important improvements that will be added to this technique involve a tool for optimization vs. cost
analysis, similar to that of CPM, and a metric to asses partial capabilities achieved by the SoS during the
development of its components.

 For both methods, analysis of data from SoS design found in literature, and comparison with the output from the
methods will be performed. In the meanwhile, an Agent Based Model has been developed to represent a naval
warfare SoS, and is currently being used to obtain the required input for FDNA.

Acknowledgement

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the
Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a federally funded
University Affiliated Research Center managed by Stevens Institute of Technology.

References

1. Maier, Architecting Principles for SoS , Systems Engineering, Vol. 1, No. 4 1998, pp. 267-284.
2. DeLaurentis, D., and Callaway, R., A SoS Perspective for Public Policy Decisions , Review of Policy Research, Vol. 21, No. 6, 2004.
3. Sage, A., and Cuppan On the Systems Engineering and Management of Systems of Systems and Federations of Systems . Information,

Knowledge, Systems Management, Vol. 2, No. 4, 2001, pp. 325-345.
4. Laughlin, R., A Different Universe: Reinventing Physics from the Bottom Down, Basic Books, 2005.
5. Yang th

International Conference on System of Systems Engineering, 2010.
6. Hsu -of- Mini-Conference, 2009.
7. DeLaurentis, D., and Crossley, W., and Mane, M., Taxonomy to Guide SoS Decision-Making in Air Transportation Problems , Journal of

Aircraft, Vol. 48, No. 3, 2011.
8. Garvey, P., and Pinto, A., Introduction to Functional Dependency Network Analysis , MIT, 2009.
9. Garvey, P., and Pinto, A., Advanced Risk Analysis in Engineering Enterprise Systems, CRC Press, 2012.
10. Blanchard, B., and Fabrycky, W., System Engineering and Analysis, 3rd ed., Prentice Hall International Series in Industrial and Systems

Engineering, 1998, Chaps. 1, 2, Appendix A.

