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Abstract

Due to their inherent limitations in computational and battery power, storage and available bandwidth, mobile devices have not yet been
widely integrated into grid computing platforms. However, millions of laptops, PDAs and other portable devices remain unused most of
the time, and this huge repository of resources can be potentially utilized, leading to what is called a mobile grid environment. In this
paper, we propose a game theoretic pricing strategy for efficient job allocation in mobile grids. By drawing upon the Nash bargaining
solution, we show how to derive a unified framework for addressing such issues as network efficiency, fairness, utility maximization, and
pricing. In particular, we characterize a two-player, non-cooperative, alternating-offer bargaining game between the Wireless Access Point
Server and the mobile devices to determine a fair pricing strategy which is then used to effectively allocate jobs to the mobile devices
with a goal to maximize the revenue for the grid users. Simulation results show that the proposed job allocation strategy is comparable
to other task allocation schemes in terms of the overall system response time.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Grid computing provides a distributed computing in-
frastructure for solving large-scale advanced scientific and
engineering problems through sharing of resources, usually
over high-speed communication networks [8,9]. Compu-
tational grids typically have a conglomeration of various
resources with different owners at geographically different
sites. Several Grid systems including Globus [7] have ad-
dressed many of these issues with the exception of resource
trading and quality of service (QoS)-based scheduling. The
GRACE [2] architecture leverages existing technologies
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such as Globus, and provides new services that are essen-
tial for resource trading and aggregation, depending on their
availability, capability, cost, and users’ QoS requirements.
An important issue of such grid computing systems is the
efficient assignment of jobs and utilization of resources of
unused devices, commonly referred to as theload balancing
or job schedulingproblem. This problem is often formulated
in the context of asystem model, an abstraction of the un-
derlying resources, that provides information to the job al-
locator regarding the availability and properties of resources
at any point in time. The job allocator then allocates jobs
to the available resources and attempts to optimize speci-
fied performance metrics, such as time deadline or revenue
maximization.

Given that millions of laptops, PDAs and other portable
devices remain unused most of the time, the grid architecture
is recently extended in[21] leading to what is called amo-
bile grid environment. The goal is to potentially utilize the
huge repository of resources of mobile devices to provide

http://www.elsevier.com/locate/jpdc
mailto:ghosh@cse.uta.edu
mailto:niroy@cse.uta.edu
mailto:das@cse.uta.edu
mailto:basu@cse.uta.edu
http://crewman.uta.edu/~preetam
http://crewman.uta.edu/~nirmalya
http://crewman.uta.edu/~das
http://crewman.uta.edu/~basu


P. Ghosh et al. / J. Parallel Distrib. Comput. 65 (2005) 1366–1383 1367

a seamless source of computational power and storage ca-
pacity. However, this concept offers significant challenges
mainly due to the inherent limitations in processing, mem-
ory, battery power and wireless communications capabilities
of mobile devices. In a mobile grid, a more important perfor-
mance metric is systemthroughputwhere the resources are
distributively owned. In this environment, a resource owner
has the right to define a very sophisticatedusage policy,
e.g., a job can run on a mobile device only if it generates
a certain minimum revenue. Distributed ownership requires
a scheduling paradigm that can operate in an environment
whereresource owners(i.e., mobile devices) andresource
users(i.e., wireless access points servers) dynamically de-
fine their own policies and models.

Job scheduling in mobile grid computing thus demands
for a decentralized algorithm with a robust system model.
We also need to consider aneconomic pricing modelthat
will govern the cost benefits of mobile device owners to al-
low complex computational jobs to be performed at those
devices. Due to the conflict of interest between the play-
ers, namely the mobile device and the wireless access point
server (WAPS), this pricing model can be more realistically
formulated using anon-cooperative bargaining theory[20]
framework.

Although Game Theoretic approaches have been proposed
to develop economic models for resource management and
scheduling in grid computing [3], they suffer from precise
lack of formulation in the sense that the actual mapping of
the problem into a game between two players has not been
shown, nor are stated analytical modeling and results. Also,
mobile grid computing is a completely new paradigm for
which only a very crude economic model has been specified
in [21]. We envision that potentially there are many mobile
devices distributed in the network, which will be competing
to share the jobs originated by the grid community. There
arise several challenging issues such as:

(1) efficient job allocation to different mobile devices tak-
ing into account various performance requirements;

(2) handling fairness in pricing the job allocation;
(3) the ability to implement the allocation scheme in a dis-

tributed manner with minimum communication over-
heads;

(4) maximizing the network efficiency, i.e., minimizing the
response time.

1.1. Related works

In mobile grid environments, the integration of wireless
mobile devices to exploit the available processing power in-
troduces new challenges. A proxy-based clustered architec-
ture for mobile grids is proposed in[21]. The pricing and job
scheduling policies in mobile grids need to manage resources
and application execution depending on the requirements of
resource consumers (i.e., WAP Servers) and resource own-
ers (i.e., mobile devices). They also need to continuously

adapt to changes in the availability of resources. This intro-
duces a number of challenging issues that need to be ad-
dressed; namely, site autonomy, resource allocation or co-
allocation, online control and so on. Several grid systems in-
cluding Globus[7] have addressed many of these issues with
the exception of resource trading and QoS-based schedul-
ing. The GRACE framework [2] particularly addresses these
two later issues by leveraging existing technologies such as
Globus and providing new services that are essential for re-
source trading and aggregation, depending on their availabi-
lity, capability, cost, and user QoS requirements. It develops
a generic distributed game theoretic architectural framework
and strategies for resource trading using different economic
models.

Some scheduling mechanisms based on game theoretic
negotiation, deployed in existing grid computing systems, is
shown in Table 1. However, none of these games attempts to
capture the competitiveness among the mobile devices, nor
do they aim at maximizing the grid community’s revenue.
Cooperative game theory has been used to obtain a Nash bar-
gaining framework to address issues like network efficiency,
fairness and revenue maximization for bandwidth allocation
and pricing in broadband networks [28]. Direct application
of a cooperative bargaining theory solution [11] and an op-
timal scheme based on the overall system response time for
load balancing [25] do not consider the pricing constraints
of a mobile device. In this paper, we first propose a pricing
model and subsequently address the issue of dynamic job
allocation such that the grid community’s revenue is max-
imized and also the overall expected job execution time is
minimized.

1.2. Our contributions

The main contributions of this paper are two-fold. First,
we propose a game theoretic framework to implement the
pricing model. The two players, namely the WAP Server
(acting on behalf of the grid community) and the mobile de-
vice, play an incomplete information alternating-offer, non-
cooperative bargaining game [4,6,17] to decide upon the
price per unit resourcecharged by that mobile device. The
dynamics of interaction is shown in Fig. 1. The concept of
incomplete information ensures that the two players have
no idea of each other’s reserved valuations, i.e., the maxi-
mum offered price for WAP Server (acting as thebuyerof
resources) and minimum expected price for mobile device
(acting as thesellerof resources). Assuming there aren mo-
bile devices under a single WAP Server, the WAP Server
has to playn such games with the corresponding devices
to form the price per unit resource vector,pi . In particular,
by drawing upon the Nash bargaining framework from non-
cooperative game theory, the pricing strategy is guaranteed
to be fair. Furthermore, we make this pricing scheme sta-
ble, so that there would be no incentives for the grid com-
munity or the mobile devices to deviate from the mutual
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Table 1
Grid resource scheduling based on game theoretic approach

Grid scheduling systems Game theoretic model Role on resource management

Spawn[26] and Popcorn[18] Auction Model Spawn supports execution of a hierarchy of variable size
processes depending upon the resource cost. An
application of Popcorn need to specify a budget for
processing each of its modules.

Nimrod-G [2] Bargaining Model, Posted Price Model Supports budget and deadline constrained scheduling
algorithm. The resource assignment depends on cost,
power, availability and QoS requirement of users.

Mungi [12], MOSIX [1] and Commodity Market Model Mungi allows the object to get some storage area, against
Nimrod-G certain rent from them.
Rexec and Anemone[5] Bid-based Proportional Resource Sharing In this case resource assignment occurs based on the value

of Utility function.
SETI@Home, Condor[22] and Community, Coalition and Bartering MojoNation is a content-sharing community network. Here
MojoNation [16] contributors can earn revenue by sharing storage.
Mariposa[23] Tender/Contract-Net Model Mariposa behaves like Popcorn. It supports budget-based

processing and storage management.
This Paper Non-Cooperative Bargaining Model Here load balancing occurs based on the pricing strategy,

maximizing the revenue of the grid community and
minimizing the job execution time.

Mobile
devices
with WAP
Server1

Mobile
devices
with WAP
Serverp

 WAP
Server1

 WAP
ServerP

     Grid
Community

      Job
Assignment

      Job
Assignment

      Job
Assignment

      Job
Assignment

Fig. 1. Dynamics of different mobile user groups with different WAPS.

agreement. Our bargaining protocol is simple, reduces com-
putational and communication costs, and also avoids using a
central matchmaker that may otherwise be a bottleneck in the
system.

The second important contribution is the workload alloca-
tion scheme based on the derived pricing model. We formu-
late the job scheduling as aconstrained minimizationprob-
lem that will maximize the revenue for the grid community.
We also introduce a new algorithm to allocate jobs to the
different mobile devices. Our bargaining scheme is shown
to work well based on the market dynamics. The job allo-
cation strategy yields an overall execution time comparable
to other load balancing schemes. A preliminary version of
this work appeared in[10].

The rest of the paper is organized as follows. Sections
2 describes an architectural overview of our mobile grid

computing system. The problem formulation and motivation
behind our bargaining game are discussed in Section3. The
bargaining protocol is presented in Section 4, while Section
5 highlights the job allocation scheme. Section 6 presents
the simulation results and Section 7 concludes the paper.

2. Mobile grid computing architecture

Fig. 2 illustrate an architecture for mobile grid comput-
ing. It is based on a wireless cellular network in which each
cell consists of a number of mobile devices along with one
wireless access point (WAP). Each such cell is called a basic
service set (BSS) according to the IEEE 802.11 based wire-
less LAN nomenclature [13]. The WAP inside each BSS is
connected through an Intranet. The WAP Server acts as a
job allocator as well as a negotiator during each bargaining
session on behalf of the grid community. Multiple BSSs are
connected together to form an extended service set (ESS).
A mobile device can change its location for bargaining from
one BSS to another BSS in which case it will negotiate with
the corresponding WAP Server of the new BSS, i.e., it can
negotiate with any WAP Server under the same ESS. Now
these WAP Servers can be interconnected with or without
wires with an edge router which accepts the job from a grid
controller (GC) and also returns the computational results
to the GC. The GC is a dedicated node or server of the grid
community and acts as the logical component to interconnect
the BSSs. This GC provides distributed services to allow for
the roaming of mobile devices between BSSs. We assume
that there is a job scheduler in the GC that will assign jobs
on behalf of the grid community to different WAP Servers
under it according to their capacity through an edge router.
The WAP Server in turn subdivides the job among differ-
ent mobile devices according to their resource constraints.
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Fig. 2. System architecture of mobile grid.

It starts an alternating offer bargaining game according to
the rules of our proposed bargaining protocol to fix the price
vector and then allocates jobs optimally to maximize the
GC’s revenue. On completion of the allocated jobs, the mo-
bile devices will send back the results to the WAP Server,
which in turn is returned to the GC via the edge router.

3. Game notation for pricing

In a mobile grid environment, the WAP Server tries to
acquire some available resources from a large number of
mobile devices. Let us analyze the competitive mobile grid
resource management scenario. Assume there are a totalP

WAP Servers and a total ofQ mobile devices. At timet , let
the number of devices under ServerWi be denoted asn(t)i ,
where 1� i�P , such that

∑P
i=1 n(t)i = Q. Fig. 3 depicts

a snapshot of the system where each mobile device is only
associated with one WAP Server at a time. If we can model
this one-to-one relationship between a particular mobile de-
vice and its current WAP Server as a bargaining game,BGj ,
for 1�j �Q, at any instant and manage their relationship
properly with the game output, then the competitive scenario
can be considered as multiple instances of this one-to-one
game between the two players (e.g.,WAP Server vs. mobile
device).

Both the players will try to maximize their utility func-
tions defined later and hence the game reduces to the sim-
ple case of dividing the difference between the maximum
buying price offered by the grid community and the mini-
mum selling price expected by the mobile users, called the
reserved valuations [20] according to game theory conven-
tions. A complete information cooperative bargaining theory

W1

W2

W3

WP

BG1

BGq

BGq+1
BGq+p

BGQ

 M1

Mq

Mq+1

Mq+p

MQ

Wi = the i th WAP Server
Mj = the j th Mobile Device

WAP Servers Pool Mobile Devices Pool

BGi = Bargaining game between mobile 
           i and corresponding WAP Server

Fig. 3. Mapping of multiple mobile user pool under different WAPs.

solution requires both players to know these reserved valu-
ations beforehand, which is not realistic, particularly for a
grid environment. Therefore, we need to model the game
using incomplete information alternating-offers bargaining
theory.

4. The bargaining protocol

Let us denote the resulting game as�(q) whereq is the
probability that the negotiation will break down in any pe-
riod. The strategy of both WAP Server and mobile device
in �(q) is defined exactly as for a bargaining game of alter-
nating offers[20]. Let (�, �) be a pair of strategies that leads
to the outcome(xt , t) in a bargaining game of alternating
offers. Letx denotes the outcome for the first bargainer,y

the outcome for the second bargainer andt is the associated
time deadline with that outcome. Thus (�, �) leads to agree-
ment (xt , t) with probability (1 − q)t and to break-down
(BD) with probability 1− (1− q)t . The algorithm, shown
in Fig. 4, describes the basic procedure of alternating-offer
bargaining.

Following Nash [19], the term “bargaining” is used to
refer to a situation in which:

(1) There is a conflict of interest on which the agreement
to conclude,

(2) A WAP Server and mobile devices under it have the
power to conclude a mutually beneficial agreement, and

(3) Any agreement cannot be imposed on either the WAP
Server or mobile devices without their approval.

The bargaining procedure is as follows. Bargainer A starts
the negotiation by sending a proposal to bargainer B. Now B
can either accept or reject it. If the offer is accepted, then the
bargaining ends and the agreement is implemented. If the
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Initialize t= 0 ;
WAP Server proposes an offer (x0)
if x0 ≥ (Mobile device’s standard
price with highest expected surplus)

then Mobile device accepts the offer;
outcome=(x0,0);

else Increment t;
Mobile device counter proposes an offer y1;
if y 1 ≤ (WAP Server’s standard price
with highest expected surplus)

then WAP Server accept;
outcome=(y 1,1);

else Increment t;
WAP Server proposes an offer (x 2)
if x 2 ≥ (Mobile device’s standard
price with highest expected surplus)

then Mobile device accepts the offer;
outcome=(x 2,2);

else Increment t;
Mobile device counter proposes an offer y3;
if y 3 ≤ (WAP Server’s standard
price with highest expected surplus)

then WAP Server accept;
outcome=(y 3,3);

else continues;

Fig. 4. Procedure of an alternating offer.

offer is rejected, then B must send back a counter-proposal
to specify his preferences to A. Now A will evaluate the pro-
posal and choose either to accept or reject it. This process
continues until an agreement is reached. In order to produce
a solution space for bargaining, the individual valuations of
a mobile device (seller of resources) and the WAP Server
(buyer of resources) should overlap. The solution space as
shown in Fig.5 represents the bargaining of two variables:
price and resources like CPU cycles, power consumption,
memory bandwidth, storage capacity, etc. Thereserved val-
uationof a mobile device is a straight line representing min-
imum selling price at different resources. So, the mobile de-
vices’ acceptable set is all the points above this straight line
such that the higher points are strictly preferred. The upward
slope of this line signifies that the minimum price increases
as the resources utilization increases. So, the mobile de-
vice’s offered price always lies above this line. Conversely,
the WAP Server’s reserved valuation is its maximum buying
price at different resources, which is represented in Fig. 5
by the upper straight line. The WAP Server’s acceptable set
is all the points below this straight line, in which the lower
points are strictly preferred. Note is that each player wants
to offer a price that is farther from its reserved valuation. In
other words, the solution space consists of the points in be-
tween these two straight lines, i.e., the intersection of these
two acceptable sets. Consequently, the result of bargaining
will fall in this solution space where both the WAP Server
and the mobile device can make a surplus and try to reach
a mutually beneficial agreement. Following the approach in
[27], we characterize the game by the three rules described
below.

Price

Resources

Mobile Device’s acceptable set

WAP Server’s acceptable set

           valuation

             valuation

WAP Server’s reserved 

Mobile Device’s reserved 

Fig. 5. Bargaining solution space.

Rule 1. Both players choose an alternative at every step
that earns them the highest expected surplus, such as the
maximum possible profit.

From WAP Server’s point of view,

Expected utility=E[Surplus] = (reserved valuation of w

− standard price)× probability

×(standard price),

whereE[X] denotes the expected value ofX, w stands for
WAP Server, and probability (standard price) is the proba-
bility that the standard price will be accepted by the mo-
bile device as predicted by the WAP Server. The standard
price represents the different offered prices used by the WAP
Server to compute its expected surplus.

On the other hand, from the mobile device’s point of view,

Expected utility=E[Surplus] = (standard price

− reserved valuation of m)
×probability (standard price),

wherem stands for the mobile device and probability (stan-
dard price) is the probability that the standard price will
be accepted by the WAP Server as predicted by the mo-
bile device. Here the standard price represents the different
requested prices used by the mobile device to compute its
expected surplus.
Rule 2. If an offer is rejected, then the WAP Server and

mobile device will reduce the probability (standard price)
based on the available resources, bandwidth and time dead-
line. This reduction monotonically decreases as the alter-
natives come closer to their reserved valuations. In other
words, it is more likely to be accepted by the opponent.
Rule 3. The demands of both WAP Server and mobile

device are decreased over time. For this we have consid-
ered a negative exponential function over time, saye−zi t ,
wherezi > 0 for i = w or m, denotes the discount rates of
both the negotiators. This assumption helps to converge the
negotiation scheme faster. Considering this rule, for WAP
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Table 2
WAP Server’s computation for making decision

Offered price ($) Probability Expected surplus ($)

40 0.10 06
60 0.40 16
80 0.70 14
90 0.90 09

100 1.00 00

Table 3
Mobile device’s computation for making decision

Offered price ($) Probability Expected surplus ($)

60 1.00 00
70 0.90 09
80 0.70 14
90 0.40 12

110 0.10 05

Server:

Expected utility=E[Surplus] = (reserved valuation of w

−standard price) × probability

×(standard price) × e−zwt

and for mobile device:

Expected utility=E[Surplus] = (standard price

− reserved valuation of m)
×probability (standard price)
×e−zmt .

An Example: Let us consider the following example. As-
sume that the WAP server’s reserved valuation for a fixed re-
source is $100 (maximum buying price) and the mobile de-
vice’s reserved valuation for the same resource is $60 (min-
imum selling price). Let the mobile device make an initial
offer of $110. The WAP Server finds that it does not max-
imize its surplus and hence rejects the offer and performs
the calculations as shown in Table2.

The WAP Server’s counter-offer depends upon its ex-
pected surplus. It asks for $60, which maximizes its expected
surplus. Now its the mobile device’s turn. Its acceptance or
rejection depends upon the calculations in Table 3.

Since the WAP Server’s offer of $60 does not match the
mobile device’s corresponding offered price with the high-
est expected surplus, it is rejected. The mobile device makes
a counter-offer and asks for $80. Then the WAP Server, on
finding its offer was rejected, modifies his prediction prob-
ability scheme by certain rules, such as probability of all
standard price is decreased by 0.30 (say). Now the new ac-
tion at WAP Server’s end depends upon the expected surplus
in Table 4.

Table 4
WAP Server’s computation using modified probability for making decision

Offered price ($) Updated probability Expected surplus ($)

40 0.10− 0.30= 0.00 00
60 0.40− 0.30= 0.10 04
80 0.70− 0.30= 0.40 08
90 0.90− 0.30= 0.60 06

100 1.00− 0.30= 0.70 00

In this case the mobile device’s offered price matches with
WAP Server’s standard price corresponding to the highest
expected surplus. So, they ultimately reach an agreement
that lies in the solution space given by the intersection of
the two acceptable sets as shown in Fig.4.

4.1. Attributes of WAP Server and mobile device

The real-life parameters affecting the game are modeled
by the following attributes. Here we have usedx to represent
both the WAP Server (w) and Mobile device (m) depending
upon the context (Table 5).
Reserved valuation(Rx): Rw is the maximum possible

price that the grid community (i.e., WAP Server) is willing
to pay to get the work done.Rm is the minimum possible
price that the mobile devicem expects for doing the work.
Market price(Mx): This value is calculated based on the

statistics. The WAP Server and mobile device will maintain
a history keeping track of the recent bargaining games that
they have participated in. This history will help determine
the “Market Value” of the resources the grid community
is seeking for. So, it depends on the kind of jobs that was
distributed by the WAP Server before and executed by the
mobile device. Also important are the characteristics of jobs,
such as time deadline, data storage required (that affects the
bandwidth), CPU cycles required, etc.
Probability (pMx

x ) that bargainers will acceptMx : The
parameterPMw

w is the WAP Server’s perceived probability
that there are mobile devices willing to do the job at the
market priceMw. This can also be statistically calculated by
maintaining the history of the previous bargaining games.
The WAP Server just needs to categorize the mobile de-
vices by the offers they accepted in previous games and then
P

Mw
w can be calculated by counting how many of the mobile

devices have their accepted prices greater than or equal to
Mw. Similarly,PMm

m defines the mobile devices’s perceived
probability that the WAP Server will accept the market
priceMm.
Offered price: This is basically given by maximizing

the utility function of counter-offering, defined as utility
(Counter offer bybargainer), by the negotiator. The stan-
dard price corresponding to the highest utility gives the
offered price.
Opponent’s offered price(Ox): It is the most recent re-

quested price by the opponent.
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Table 5
Different parameters of WAP Server and mobile device

Parameters Meaning of the symbols

Rx Reserved valuation
Mx Market price

p
Mx
x Probability that Bargainer will acceptMx , i.e., market price

Ox Offered price

p
Ox
x (acc) Probability predicted by the one bargainer that other bargainer will accept offered PriceOx

Oxy Expected counter offered price of one bargainer predicted by the opponent

p
Ox
x (rco) Probability that bargainer will rejectOx and counteroffer

p
Ox
x (rbd) Probability that bargainer will rejectOx and breakdown

e−zx t Discount factor
ϑ Resource constraintsϑ ∈ {0,1}

Probability (pOx
x (acc)) that bargainers will acceptOx :

This is the negotiator’s perceived probability that the oppo-
nent will accept its offer and is calculated by the profile tree
approach discussed later.
Probability that bargainer will rejectOx and break-down

(P
Ox
x (rbd)): This signifies the negotiator’s perceived prob-

ability that the opponent will reject his offer and the game
will break down.
Probability that bargainer will rejectOx and counter-

offer (POx
x (rco)): This signifies the negotiator’s perceived

probability that the opponent will reject his offer but the
game will not break down. It is given by the following ex-
pression:POx

x (rco) = (1− P
Ox
x (acc)− P

Ox
x (rbd)) where

x ∈ {w,m}.
Discount factor(e−zx t ): This signifies the penalty afflicted

on the utility function of the negotiator as the bargaining
continues. The idea is to reduce the effective surplus of the
negotiator in course of the bargaining game, and thus there
is more incentive in completing the game early.
Expected counter-offered price(Oxy ) of bargainer x as

predicted by opponent y∀x, y ∈ {w,m}: This is the counter-
offered price of the opponent as predicted by the negotiator
and is determined by an intelligent guess of the opponent’s
reserved valuation.
Resource constraint(ϑ): It behaves like a step function. If

the resource availability of any one of the negotiators does
not fulfill the minimum requirement, thenϑ = 0, otherwise
ϑ = 1. That is, if a mobile device does not have sufficient
resources to offer, then it setsϑ = 0 and breaks down from
the game.

4.2. Formal model of the pricing strategy

The various utility functions governing our bargaining
game is presented in this section.

(1) From WAP Server’s perspective: In this case, all the
probabilities are predicted by the WAP Server as a belief of
the mobile device’s next action based on the computational
state of the game as depicted in Fig.6.

WAP 
Server

Counter-offer

Mobile Device’s requested price
Mobile Device

WAP 
Server
Accept

WAP 

Break-down
Server

Fig. 6. Various actions of WAP Server against mobile device’s offer.

1. If the WAP Server accepts the current-offer and arrives
at an agreement, then its expected utility is simply

Utility (Acceptance by w)

= Value of(Surplus) = ([reserved valuation of w
− offered price by m) + (market price of w

− offered price by m)] × ϑ

= [(Rw −Om)+ (Mw −Om)] × ϑ.

The term(Mw − Om) indicates the penalty from the
market if the offered price bym is accepted by the bar-
gaining game.

2. If the WAP Server rejects the offer from mobile device
and breaks down from the game, then its expected utility
is

Utility (Break-down by w)

= [(reserved valuation of w
− market price of w)
×probability (market price will be
accepted by mobile user)] × e−zwt

= (Rw −Mw)× pMw
w × e−zwt .

As all the terms (except the discount factor) are con-
stants for each bargaining session,Utility (Break-down
by w) is reduced with time and becomes zero whent =
deadline, which implies that the game converges. Also,
we do not multiply the utility function with the resource
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Mobile 
Device
Accept

Mobile 
Device

Break-down

Mobile 
Device

Counter-offer

WAP Server’s offered price

WAP Server

Fig. 7. Various actions of mobile device’s against WAP Server’s offer.

constraint, because its value is 1 when the resource re-
quirements are met, and ifϑ goes to zero, the game
should breakdown, i.e.,Utility (Acceptance by w) and
Utility (Counter offer by w) should become zero, which
makesUtility (Break-down by w) the greatest, and the
game breaks-down.

3. Now, the WAP Server’s counter-offer depends upon the
following factors: (i) Revenue obtained if mobile device
accepts the current-offer ofw, (ii) Revenue obtained if
mobile device rejects the offer ofw and breaks down
from the game and (iii) Revenue obtained if mobile de-
vice rejects the counter offer ofw and proposes another
offer from its end.

Utility (Counter-offer by w)

= [[(reserved valuation of w
− current offered price by w)
+ (market price of w− offered price by w)]
×probability (a mobile user will accept)
+ Utility (Breakdown by w)

×probability (a mobile user will reject and
Break-down)+ (reserved valuation of w

− expected counter-offered price of
m predicted by w)× probability
(a mobile user will reject and counter-offer)]
× e−zwt × ϑ

= [[(Rw −Ow)+ (Mw −Ow)] × pOw
w (acc)

+ [Utility (Break-down by w)× pOw
w (rbd)]

+ [(Rw −Omw)× pOw
w (rco)]] × e−zwt × ϑ.

Here also, whent = deadline, Utility (Counter-offer
by w) becomes zero making the game converge. Also,
it should be noted that the predicted probabilities are
made use of in this expression (and not in the other
two), to normalize the three utility functions as we have
p
Ow
w (acc)+ p

Ow
w (rbd)+ p

Ow
w (rco) = 1.

(2) From mobile device’s perspective: We use the same
types of utilities as in the previous case, however, all the
probabilities are now predicted by mobile device as a belief
of WAP Server’s next action based on the state of the game
as shown in Fig.7.

Utility (Acceptance by m)

= [(Ow − Rm)+ (Ow −Mm)] × ϑ,

Utility (Break-down by m)

= [(Mm − Rm)× pMm
m ] × e−zmt ,

Utility (Counter offer by m)

= [[(Om − Rm)+ (Om −Mm)]
×pOm

m (acc)+ [Utility (Break-down by m)

×pOm
m (rbd)] + [(Owm − Rm)

×pOm
m (rco)]] × e−zmt × ϑ.

Proposition 1. The asymmetric reduction of perceived
probability (different reduction rates of perceived probabil-
ity corresponding to the offered prices) with time helps to
accelerate the convergence within a given time deadline.

Proof. In each bargaining session, the offered prices and
the reserved valuation of both the negotiators are always
fixed. Now, offered prices depend upon expected surplus
which in turn depends upon the perceived probability of
acceptance. So, as we decrease the perceived probability
monotonically with time, the expected surplus also decreases
monotonically. This motivates the bargainers to offer prices
which are closer to their reserved valuation.�

Proposition 2. If both the negotiators are rational, then they
always come to an agreement(i.e. the game converges) as
bargaining timet →∞.

Proof. Both the negotiators offer prices which are closest
to their opponents’ reserved valuation at the start of each
Bargaining Session. However, with rejections from the op-
ponent they realize that their perceived probabilities of ac-
ceptance by the opponent is lower than what they believed.
So, they offer a new price closer to their own reserved val-
uations followingProposition1. Thus, the bargaining con-
verges. Now, if we forcibly makezi = ∞, (for i = w,m),
when t = deadline, the bargaining game is guaranteed to
converge within the specified deadline.�

4.3. Model of interdependent attributes

In case of incomplete information bargaining, the bargain-
ers do not reveal their computational strategies. Here each
proposal and response provide some information about fu-
ture predictions and decisions. They act as signals that help
the bargainers to update their beliefs about what the other
has computed. Each of them uses this information along
with their own computations to determine its future comput-
ing actions, proposals and responses. Both the WAP Server
and mobile device can directly observe all proposals and re-
sponses, but their computational actions are private. A bar-
gainer can only try to guess this information from his oppo-
nent’s states like acceptance (acc), rejection with counter-
offer (rco), or rejection with breakdown (rbd).
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Fig. 8. A profile-based tree structure of alternating offers.

In our scenario, there are three types of perceived proba-
bilities for each of the bargainers: perceived probability that
an offer will be accepted by the opponent, an offer will be
rejected by the opponent which in turn makes a counter of-
fer or the opponent moves out of the game. The values of
these three parameters depend upon the state of computa-
tion of the responder. Let the computational state at timet

at theith WAP Serverwi andj th mobile usermj end are,
respectively,Cwi

(t) andCmj
(t). Let Ai(t) be assumption

of bargaineri at time t , which is a probability distribution
over the set of states of computation that his opponentj

may be in at timet . Let ai(Cmj
(t)) be the probability that

bargaineri believes that bargainerj is in his computational
stateCmj

(t). Now this bargainer updates its perceived prob-
ability depending on its own computational state and from
his opponent’s responses[15].

In Fig. 8 we represent a profile (history)-based tree struc-
ture of alternating offers with nodes representing some of
the actions of WAP Server and mobile devices. Each branch
represents the corresponding perceived conditional proba-
bility of each action. The pair of reservation values (Ri) are
drawn from a continuous joint distribution function,Fi(ri) ∀
i = 1,2, with a positive densityfi defined on[0,1]×[0,1].
These distribution functions are common knowledge to the

system. Each branch probability is calculated by a prediction
of the opponent’s next possible action. The bargaineri is
able to compute the conditional probabilityP [Cmj

(t−1)→
Cmj

(t)/Cwi
(t)] of bargainerj by traversing from the state

Cmj
(t−1) toCmj

(t) given its own computation stateCwi
(t)

at timet by reviewing the tree structure. So,

ai(Cmj
(t)) =

∑
Cmj

(t−1)

P [Cmj
(t − 1)

→Cmj
(t)/Cwi

(t)] × ai[Cmj
(t − 1)]. (1)

Similarly, the bargainerj (i.e., the mobile device) computes
the predicted probabilities as follows:

aj (Cwi
(t)) =

∑
Cwi

(t−1)

P [Cwi
(t − 1)

→Cwi
(t)/Cmj

(t)] × ai[Cwi
(t − 1)]. (2)

We can observe that whenever a counter-offer comes from
the opponent, the current player knows the opponent’s state
of computation (i.e., reject and counter-offer). Thus, we
know thatCmj

(t−1) = Reject & CO. And correspondingly,
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we can write Eq. (1) as

ai(Cmj
(t))= P [Cmj

(t − 1)→ Cmj
(t)/Cwi

(t)]
×ai[Cmj

(t − 1)] (3)

and from Eq. (2) we get,

aj (Cwi
(t))= P [Cwi

(t − 1)→ Cwi
(t)/Cmj

(t)]
×aj [Cwi

(t − 1)]. (4)

5. Job allocation scheme

We consider a single class job distributed system consist-
ing of n mobile devices. The WAP Server knows the price
per unit resourcepi and processing rate�i of the ith mo-
bile device. If different grid users assign jobs to the same
WAP Server, then the WAP will have to maintain price vec-
tors for each of the grid users. This is because, different grid
users will have different reserved valuations and hence the
bargaining game will give different results each time. Also,
the bargaining game is played offline, i.e., the WAP server
is assumed to have an idea of the reserved valuations of dif-
ferent grid users, and it will have its price vectors ready be-
fore the job allocation is done. Here, we will be allocating
jobs coming from a particular grid user. We assume that the
mobile devices deal with two resources, namely idle CPU
cycles and buffer size (required for queueing up jobs) with
equal weight. In other words,pi = price per unit CPU cycle
= price per unit buffer size of theith mobile device.

Modeling each mobile device as an M/M/1 queue, the
expected execution time[25] over all jobs executed by the

system is given by
∑n

i=1
�i

�(�i−�i )
where,�i is the average

processing rate and�i is the average job arrival rate at mobile
devicei and� is the total job arrival rate at the WAP Server.
The execution time at every node comprises a queueing delay
and an actual processing delay. We assume a constantki
which maps the execution time to the amount of resources
(both CPU cycles and buffer size) consumed at nodei. Thus,
the price to get�i amount of work performed at theith node

is given by kipi�i
�(�i−�i )

and the overall cost of the system is
given by

C(�i ) =
n∑

i=1

kipi�i
�(�i − �i )

. (5)

Now, our objective is to find an efficient job allocation
scheme{�1, �2, . . . , �n} of then mobile devices which will
optimize the revenue of the grid community, by minimizing
C(�i ). Eq. (5) can be written as

C(�i ) = −
n∑

i=1

kipi

�
+

n∑
i=1

kipi�i
�(�i − �i )

. (6)

Therefore,C(�i ) is minimized if
∑n

i=1
kipi�i

�(�i−�i )
is mini-

mized. The job allocation should obey the following condi-
tions:

Positivity: �i �0, i = 1, . . . , n, (7)

Conservation:
∑n

i=1
�i = �, (8)

Stability: �i < �i , i = 1, . . . , n. (9)

Definition 1. The optimization problem is defined as

Minimize F(�i ) =
n∑

i=1

kipi�i
�(�i − �i )

subject to the following constraints:
∑n

i=1 �i = �, �i > �i
and�i �0.

The second constraint ensures that no individual grid node
is saturated.

Theorem 1. The objective functionF(�i ) is minimized if

�i = �i −
√
kipi�i

∑n
j=1 �j − �∑n

j=1
√
kjpj�j

(10)

subject to the constraints
∑n

i=1 �i = � and �i > �i . The
minimum value ofF(�i ) is given by(∑n

i=1

√
kipi�i

)2∑n
i=1 �i − �

.

Proof. This is a non-linear programming problem which
is solved by using Lagrange multiplier theorem as shown
below. Leta�0, �i �0, for i = 1, . . . , n be the Lagrange
multipliers. The corresponding Lagrangian function for the
problem is given by

L(�i , a, �i )=
n∑

i=1

kipi�i
�(�i − �i )

+ a

(
n∑

i=1

�i − �

)
+

n∑
i=1

�i (�i − �i ).

The optimal solution satisfies the Kuhn–Tucker conditions,

�L

��i
= kipi�i

�(�i − �i )2
+ a + �i = 0,

for i = 1, . . . , n, (11)

�L

�a
=
∑

�i − � = 0, (12)

�i − �i �0, �i (�i − �i ) = 0,

�i �0, for i = 1, . . . , n. (13)
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Since�i − �i > 0, Eq. (13) gives�i = 0. Thus, Eq. (11)
reduces to

kipi�i
�(�i − �i )2

+ a = 0 for i = 1, . . . , n (14)

⇒√−a� =
∑√

kipi�i∑
�i − �

, (15)

Eqs. (14) and (15) give

�i = �i −
√
kipi�i (

∑n
j=1 �j − �)∑n

j=1
√
kjpj�j

. �

If we also introduce the condition that�i should be non-
negative,Theorem1 cannot guarantee a solution. Note that

�i becomes negative when
√

�i <
√
kipi

∑n
j=1 �j−�∑n

j=1
√

kjpj�j
, sig-

nifying the mobile devicei is too slow to carry out the job
allocated to it. So, we set�i = 0 implying that no job is al-
located to theith mobile device. We then eliminate theith
mobile device from consideration and recompute the work-
load allocation for the other(n−1) devices. This process is
continued iteratively until a feasible solution is found. Our
algorithm closely follows the COOP algorithm [11] and has
O(nlogn) running time. It is described below:

PRIMAL Algorithm . Price-based optimal workload
allocation scheme.
Input: The average processing rates of mobiles:

{�1, �2, . . . , �n}.
Total job arrival rate�.
The price per unit resource vector:{p1, p2, . . . , pn}.
The constants vector:{k1, k2, . . . , kn}.

Output: The optimal job allocation{�1, �2, . . . , �n}.
1. Sort the mobile devices in decreasing order of

�1
k1p1

� �2
k2p2

� · · · � �n
knpn

;

2. c←
∑n

i=1 �i−�∑n
i=1

√
kipi�i

;

3. while
(
c >

√
�n√
knpn

)
do

�n← 0;
n← n− 1;

c←
∑n

i=1 �i−�∑n
i=1

√
kipi�i

;

4. for i = 1, . . . , n do
�i ← �i − c

√
kipi�i ;

The validity of this algorithm is proved by the following

theorem:

Theorem 2. If
√

�i <
√
kipi

∑n
j=1 �j−�∑n

j=1
√

kjpj�j
, for i 1� i�n,

thenF(�i ) is minimized by setting�i = 0, subject to the

additional constraint�i �0 in addition to the two constraints
stated in Theorem1.

Proof. Let �1
k1p1

� �2
k2p2

� · · · � �m
kmpm

. If
√

�m <
√
kmpm∑m

j=1 �j−�∑m
j=1 kjpj�j

, the objective function is minimized when�m =
0 subject to the additional condition�i �0. Proceeding in
the above manner, we have

�L

��i
= kipi�i

�(�i − �i )2
+ a + �i = 0,

i = 1, . . . , m− 1, (16)

�L

��m
= kmpm�m

�(�m − �m)2
+ a + �m − �m = 0, (17)

�L

�a
=
∑

�i − � = 0, (18)

�i − �i �0, �i (�i − �i ) = 0, �i �0,

for i = 1, . . . , m, (19)

�m�0, �m�m = 0, �m�0. (20)

Since�i > �i , Eq. (19) gives�i = 0 for i = 1, . . . , m.
Thus, Eq. (16) reduces to

kipi�i
�(�i − �i )2

+ a = 0,

for i = 1, . . . , m− 1. (21)

Eq. (17) reduces to

kmpm�m
�(�m − �m)2

+ a − �m = 0. (22)

Now, we have two situations:
Case 1: �m > 0. Eq. (20) gives�m = 0, and from Theorem

1 we can infer

�i = �i −
√
kipi�i (

∑m
j=1 �j − �)∑m

j=1
√
kjpj�j

for i = 1, . . . , m. (23)

Case 2: �m = 0. Eq. (20) gives�m < 0. Thus Eq. (22)
reduces to

kmpm�m
�(�m − �m)2

+ a = �m < 0. (24)

Putting,�m = 0 in Eq. (24) we get,a < − kmpm
��m

. Again, Eq.
(24) gives √−(a�)(�m − �m) > kmpm�m.
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Taking summation on both sides, we get,

∑
kjpj�j <

√−(a�)
[∑

�j − �
]
. (25)

Substituting the value of ‘a’ from Eq. (25), we get

√
�m <

√
kmpm

[∑m
j=1 �j − �

]
∑m

j=1 kjpj�j
. � (26)

In other words, the job allocation{�1, �2, . . . , �n} given
by PRIMAL is an optimal solution for the minimization
problem stated inTheorem1. We have assumed that the
bandwidth of the wireless channel is always greater than
that required to transfer the amount of job allocated to the
corresponding mobile device. If, however, the bandwidth
goes below the minimum requirement, the WAP Server will
makepi = ∞ for the corresponding mobile devicei which
automatically ensures that�i = 0.

6. Performance evaluation

We developed a simulation platform to evaluate the per-
formance of our Bargaining protocol with the proposed util-
ity functions.

6.1. Assumptions

1. The WAP Server and mobile device do not know the
other’s reserved valuations at the start of the bargaining
game.

2. Each player draws its reserved valuation independently
using a random number generator and uses the same to
guess the opponent’s reserved valuation. The initial offered
price of any negotiator is determined from the guessed re-
served valuation in the following way. If the WAP Server
starts the game, thenIOw = �× minimum (guessRm,Mw)

where,IOw = Initial offered price from WAP Server end;
guessRm = WAP Server’s guess of reserved valuation of
Mobile device;Mw = Market Price of the resource known
to WAP Server;� = a constant (we have assumed� = 0.5).
Thus,� is a measure of the amount of profit that the WAP
wants to make. If the mobile device starts the game, then
IOm = � × maximum (guessRw,Mm) where,IOm = Ini-
tial offered price from mobile device,guessRw = Mobile
device’s guess of reserved valuation of WAP Server;Mm =
Market Price of the resource known to mobile device;� = a
constant (we have assumed� = 1.5). Similarly,� is a mea-
sure of the amount of profit that the mobile device owner ex-
pects. The offered prices of the WAP Server follow a mono-
tonically increasing function and those for the mobile de-
vices follow a monotonically decreasing function. To keep
the offered prices always in between the interval(0,1), we
have considered the parameters of our negative exponential
function in such a way that the array of offered prices of

WAP Server is given by

Ow[i] = Ow[0] + (Rw −Ow[0])× (1− exp−(i×6.9/�)),

where� = total number of offered prices;Ow[0] = initial
offered price of WAP Server;Ow[i] = the ith offered price
of server. Similarly, for the mobile device we have

Om[i] = Rm + (Ow[0] − Rm)× exp−(i×6.9/�) .

3. The bargaining is based upon price per unit resource.
Each bargainer makes an offer maximizing his revenue.

4. A WAP Server (buyer) is not allowed to make an offer
which is less than his previous offered price, and a mobile
device (seller) is not allowed to make an offer which is
greater than his previous offered price within one bargaining
session.

5. The predicted probability calculations have been sim-
plified for our simulation purpose. We started with the same
exponential distributions for the predicted probability of ac-
ceptance of the opponent as for the offered prices. Thus,

Pw[i] = Pw[0] + (1− Pw[0])× (1− exp−i×6.9),

Pm[i] = Pm[0] + (1− Pm[0])× (1− exp−i×6.9).

The predicted probabilities of break-down have been ini-
tially assumed to be (1—predicted probability of acceptance
for that offered price). Thus, the predicted probabilities for
counter-offer are initially 0 for all the possible prices to be
offered.

At every step, the predicted probabilities of acceptance
are updated as

Pw[i] = Pw[i] × Pw[i] × (1− exp−6.9×�/t ),

where t = current time (measured in the current num-
ber of alternating offers). We assume that during every
counter-offer, the probability of acceptance by the op-
ponent decreases. The amount of this decrease, how-
ever increases exponentially witht . Thus, Pwt [i] =
Pwt−1[i] × (1− exp−6.9×�/t ) and the actual predicted prob-
ability at timet , is given by

Pwt [i] = Pwt−1[i] × Pwt [i] × (1− exp−6.9×�/t )

⇒ Pw[i] = Pw[i] × Pw[i]
×(1− exp−6.9×�/t ).

Similarly, for the mobile device we have,

Pm[i] = Pm[i] × Pm[i] × (1− exp−6.9×�/t ).

The predicted probability of break-down vector is kept the
same during the simulation, and the predicted probability of
counter-offer is calculated by the expression: 1−POx

x (acc)−
P

Ox
x (rbd). The results have been generated withzi = 0.5,
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Fig. 9. Expected revenue of WAP Server vs. offered prices.
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when t < deadlineandzi = ∞, when t = deadline, for
i = w,m.

6.2. Simulation results

The goals of this evaluation are to measure the perfor-
mance of our Bargaining Protocol based on our utility func-
tions. We can observe that the nature of the plots for mobile
devices and WAP Servers are the same. This is because we
have assumed the same system parameters (i.e.,zi , Mx and
p
Mx
x ) for the two players. Thus the plots does not quite show

the performance of the bargaining protocol with different
values of these parameters. But, they depict the correctness
of the utility functions and show the dependency of the ex-
pected surplus of the players on the system parameters.

Fig. 9 describes the expected revenue of WAP Server
against each of its offered prices with time. We observe that
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Fig. 11. Expected revenue of mobile device vs. offered prices.
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Fig. 12. Expected share of mobile device vs. time intervals with a fixed
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the expected revenue is maximized in the middle of the first
half of its offered prices. With increasingt , the revenue grad-
ually decreases which is due to the nature of the utility func-
tions, as the discount factor of the WAP Server accelerates
the negotiation by decreasing the individual revenue with
time. Fig. 10 shows the effect of the revenue with a fixed
offered price against time. Again in this case, the revenue
decreases with increasingt , and is maximum for the fifth
offered price att = 0. Fig. 11 presents the revenue earned
by mobile devices against some of its offered prices. It can
be observed from this graph that the revenue is maximized
at the second half of its offered prices. Since the offered
price of the mobile devices follow a monotonically decreas-
ing function, its revenue decreases as the prices reach the re-
served valuation. The revenue of the mobile device is much
more during the initial phase of the bargaining. Fig. 12 rep-
resents the variation of the revenue of mobile device against
time during the negotiation process. It gains the maximum
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Fig. 13. Expected share of WAP Server and mobile device vs. market
price.

revenue during the initial phase of the bargaining. Fig.13
shows that as the market price increases in case of WAP
Server, the expected share of the revenue also comes down.
If the market price is low, the WAP Server does not have to
offer high prices for getting the work done by mobile de-
vices as there might be other clients in the market who can
do the same work with less price. On the other hand, for a
mobile device, if the market price of doing the job is high,
it would not be offering lower prices during the bargaining
session which in turn produces less revenue for the device.
Because it knows that very few mobile devices are available
for performing that particular computational task below a
certain level of market price. But as the market price goes
down, it has to offer lower prices for coming up with an
agreement with the WAP Server which reduces its effective
share of the revenue.

With this pricing strategy in place, we now simulate a
heterogeneous grid system of 16 mobile devices under one
WAP server with four different processing rates. The alter-
nating offer bargaining game has already decided the price
vector,pi , for our job allocation algorithm. Also, we con-
sider the case where no breakdown has occurred. Otherwise,
for every breakdown, the corresponding mobile device will
not be considered for job allocation. Table 6 gives the sys-
tem configuration for our simulation environment. The first
row gives the relative processing rate of the four types of
mobile devices, i.e., it signifies how fast the mobile device
is when compared to the slowest type. The second row gives
the number of mobile devices belonging to each type. We
arbitrarily assume the processing rates (third row) of the mo-
bile device types, because it will not affect our results. The
last row gives the values forki , the constant which maps the
execution time at mobile devicei to the amount of resources
consumed ati. It can be seen that a faster mobile device
has a higherki value because it will expect more price to
perform the same amount of work as other slower devices

Table 6
System configuration

Relative processing rate 1 2 5 10

Number of mobile devices 6 5 3 2
Processing rate (jobs/sec) 0.013 0.026 0.065 0.13
ki 1 2 3 4

and thus the “effective resources” consumed in that case is
higher.

For comparison purposes, we have implemented the fol-
lowing two load-balancing schemes in addition to the pro-
posed PRIMAL algorithm:
COOP scheme[11]: The cooperative load balancing

(COOP) scheme is used to minimize the expected execu-
tion time of jobs from the mobile device perspective. The
load allocation at each device is determined by minimizing
the expected execution time at each mobile device and can
be obtained by solving the following linear optimization
problem:

min
�i

{
1

�i − �i

}
, for i = 1, . . . , n

subject to the constraints (7–9). The minimization problem
has been subsequently mapped to a cooperative bargaining
theory problem and solved by obtaining the corresponding
Nash bargaining solution (NBS).
OPTIM scheme[25]: This optimal static load balancing

scheme is applied to minimize the overall expected execution
time of jobs from a system, i.e., the grid user perspective.

Here, the load allocation is also obtained by solving a
linear optimization problem given below:

min
�i

n∑
i=1

�i
�i − �i

, for i = 1, . . . , n

subject to the same constraints (7–9).
Fig. 14 shows the plots for total price that the grid user

has to pay against system utilization. System utilization (�)
is defined as the ratio of the total arrival rate to aggregate
processing rate of the system:� = �∑n

i=1 �i
. The price in-

creases with increasing� (ranging from 10% to 90%) be-
cause the mobile devices get overloaded resulting in higher
overall expected response time and subsequently higher cost
for the grid user. Fig. 14 shows three curves corresponding
to random, strictly decreasing and strictly increasing price
vector (the mobile devices are initially numbered in decreas-
ing order of their processing rates). The random price vector
is the one obtained by our pricing strategy and the curve for
the total price of a grid user for random price vector lies
between that for the ascending and descending price vector
cases. This can be explained by the fact that if the faster de-
vices charge lesser prices (price vector in ascending order),
then they will get the bulk of the work resulting in lesser
overall response time and subsequently lesser total price for
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Fig. 15. Response time vs. system utilization.

the grid user. Similarly, if the faster devices charge more
(price vector in descending order), then they will get lesser
jobs resulting in greater total response time and subsequently
greater price for the grid user.

Fig. 15 plots the overall expected response time against
system utilization. We observe that PRIMAL performs
equally well for smaller� when compared to COOP and
OPTIM. With higher values of�, OPTIM gives a better
performance and PRIMAL catches up with COOP when�
goes beyond 70%.

Another important performance metric is thefairness in-
dex[14] which is defined by

I (C) =
[∑n

i=1 Ci
]2

n
∑n

i=1 C2
i

,

whereCi denotes the price that the WAP Server has to pay to
the ith mobile device for the jobs it executes. Obviously, if
everyI (Ci ) = 1, the load is evenly balanced and the system
is 100% fair. With increasing variability inCi , the index
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Fig. 16. Index of fairness vs. system utilization.

I (C) decreases and the unfairness in the system increases.
Fig 16 shows the change in fairness index for PRIMAL
with increasing load in the system. Because the objective
of PRIMAL is to reduce the overall cost for the jobs, it is
an unfair scheme and the fairness index falls to as low as
0.48 for a descending price vector. Also, we can observe that
when the price vector is in ascending order implying that the
faster devices charge less, the fairness index varies between
0.8 and 0.9 at high load. This is because, more jobs are
allocated to the faster devices such that the job processing
time and the corresponding price charged by every device
are quite close to each other.

We also study the effect of heterogeneity in the system
on the total price that the WAP has to pay and the fairness
index. Heterogeneity can be attributed to differences in pro-
cessor speed, memory, I/O and bandwidth (which we have
not considered in this work) of the individual devices. We
will quantify heterogeneity by thespeed skewness[24] de-
fined by the ratio of maximum to minimum processing rates
of the devices. We will use 16 devices in our simulation with
10 slower and six faster devices. The slower devices have a
relative processing rate of 1, and that for the faster devices
is varied from 1 (minimum heterogeneity) to 20 (maximum
heterogeneity). Also, for simplicity, we assumeki the same
as the relative processing rate for the devices. The system
utilization is kept constant at 60%.

Fig. 17 plots the overall response time of the jobs with
increasing speed skewness. As the relative processing speed
of the faster devices increases, the total response time
goes on decreasing for all the three schemes as expected.
OPTIM again performs better than the other two, but PRI-
MAL catches up with COOP when the relative processing
speed is greater than 8. Fig. 18 plots the changes in total
price charged by the mobile devices with increasing speed
skewness for three different price vectors (as discussed
before). Again, the ascending price vector performs better
than random and descending price vectors. An interesting
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point to note is that with a descending price vector, the total
price increases for smaller values of the relative processing
rate. This is because, the faster the devices, the lesser are
the jobs allocated to them, resulting in an increase in the
overall response time and a corresponding increase in price.
Fig. 19 plots the fairness of PRIMAL with increasing speed
skewness. Increasing heterogeneity in the system decreases
the fairness to as low as 0.45 for a decreasing price vector at
relative processing speed of 20. The ascending price vector
still performs better than the other two, but the difference
decreases with increasing skewness.

7. Conclusion

With the increasing demand for internet-connected wire-
less mobile devices and for the resource hungry computa-
tional grid, it is natural to propose efficient techniques to
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harness the processing power of millions of wireless de-
vices. Till now various approaches like SETI@Home, Le-
gion, GRACE, Globus and commercial ventures such as
Parabon, Entropia have been proposed in normal grid envi-
ronment. But no work has been done in mobile grid comput-
ing. We have designed an economic model and algorithmic
framework so that resource hungry computational grids can
buy and the mobile device can sell their computing power.
Because of the inherent limitations in storage capacity and
bandwidth availability of wireless devices, we have to mo-
tivate the skeptical device owners to contribute their mobile
devices during off period. This potential restriction leads to
the design of our pricing model in such a way that it maxi-
mizes the utility of both the grid community and all mobile
users depending upon their respective strategies. In this pa-
per, we have considered only two player games (one WAP
server and one mobile device) for the time being. Multi-
player games will be more challenging due to the interaction
between the mobile users under one WAP server. We plan
to extend our work to model a(n+1)-player game between
the WAP Server and then mobile devices within its range
to give a better approximation of the interactions between
the players. Finally, the job allocation strategy can also be
improved by considering a complex cost function that char-
acterizes the mobile grid scenario in a better fashion.
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