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Abstract

This paper proposes an optimal cooperative spectrum sensing scheme, based on the criterion of deflection coefficient maxi-
mization of the global decision statistic. Multiple cooperative secondary users serve in the cognitive radio network to provide
space diversity for spectrum sensing. After the fusion center acquires the optimal fusion weights, an optimal global threshold
setting strategy is utilized to obtain the final global decision. Since the proposed optimal cooperative sensing scheme requires
precise estimations of primary user signal strengths and the noise variances at different cooperative secondary users, a recursive
estimate algorithm is also proposed. Simulations illustrate the proposed optimal soft fusion scheme can significantly improve
the spectrum sensing performance and outperform the conventional maximal-ratio combining and equal gain combining
schemes. The recursive estimate algorithm can effectively approach the ideal performance of the proposed sensing scheme.
� 2009 Elsevier GmbH. All rights reserved.

Keywords: Deflection coefficient maximization; Energy detection; Optimal soft fusion; Cooperative spectrum sensing; Cognitive radio

1. Introduction

Cognitive radio (CR) has been proposed in recent years
as a promising paradigm for exploiting the precious spec-
trum opportunities, which are wasted by the current fixed
spectrum allocation scheme, to solve the spectrum scarcity
problem in nowadays [1,2]. Being inherently lower prior-
ity or secondary users (SU), the fundamental requirement
for CR is to avoid interference to the primary users (PU)
in the vicinity. In order to detect the PU signal with un-
known location, structure and strength, energy detection
(ED) serves as the optimal spectrum sensing scheme when
the detector only knows the power of the received signal.
Moreover, ED is also the most commonly used strategy in
spectrum sensing due to its implementation simplicity [3,4].
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However, there are several factors that prevent the energy
detector from operating in a reliable manner, such as mul-
tipath fading/shadowing and noise power fluctuating [5,6].
These factors suggest the necessity of secondary users’ co-
operation in the CR networks [7–12].

In a centralized user cooperation scenario, several de-
flection coefficient (DC) based soft fusion algorithms have
been proposed in the literature to improve the overall sens-
ing performance in the CR network. In [9], a soft fusion
solution is obtained by tackling the problem of maximiz-
ing the modified deflection coefficient (MDC). Based on
the Rayleigh–Ritz inequality, this solution is actually a
maximum eigenvector based soft fusion scheme. In [10], a
linear-quadratic fusion strategy is proposed, on the basis of
deflection criterion, to study its performance in correlated
log-normal shadowing environments. Therein, the conven-
tional ED sensing scheme has been rebuilt by introducing
the covariance matrix of the received signal into the sensing
statistic. In [11], an optimal soft fusion weight vector is
derived in a likelihood ratio test. It is thereby proved to be a
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conventional maximal ratio combination (MRC) scheme. In
[12], a blindly combined energy detection (BCED) for spec-
trum sensing is proposed. The blind combining weights are
derived based on the covariance matrix of the signal sam-
ples received by multiple antennas of the fusion center (FC).
Assuming the signa-to-noise ratios (SNR) of the received
PU signals at the cooperative SUs are known, the proposed
scheme in [9] is a special case of the BCED.

In this paper, an ED based optimal cooperative spectrum
sensing scheme is developed, based on the optimality cri-
terion of deflection coefficient maximization (DCM) of the
global test statistic at the FC. The DCM based coopera-
tive spectrum sensing scheme is categorized into the normal
DCM (NDCM) soft fusion and the modified DCM (MDCM)
one. We prove that the NDCM and MDCM based soft fu-
sions have the same theoretical performance in coopera-
tive spectrum sensing. To implement the proposed optimal
sensing scheme, an optimal global threshold setting method
and a simple yet effective recursive estimate algorithm are
also proposed. Using this estimate algorithm, NDCM and
MDCM only have trivial performance difference in practice.
Analysis and simulations verify the superior performance of
our proposed cooperative spectrum sensing scheme, com-
pared to the conventional maximal-ratio combining (MRC)
and equal gain combining (EGC) schemes.

The rest of the paper is organized as follows. In Section 2,
the system model of spectrum sensing observation relay-
ing and energy measuring is given. In Section 3, the DCM
based cooperative spectrum sensing is investigated with two
different fusion methods, namely the NCDM and MDCM.
Implementation of the DCM based cooperative spectrum
sensing scheme is then presented in Section 4. Conclusions
are finally given in Section 5.

2. System model

2.1. Spectrum sensing observation relaying

We consider that M cooperative SUs (denoted as
{Ri }M

i=1) are deployed over a certain geographical area of
the CR network by some upper layer algorithms and they
simply serve as relays in the network to provide space
diversity.

In the first phase, the signal received at the i-th relay Ri is

xi (k) =
{

ni (k), H0, k ∈ {1, 2, . . . , K },√
EPU hi s(k) + ni (k), H1, i ∈ {1, 2, . . . , M},

(1)

where s(k) is the transmitted signal of the PU transmitter
at time k with unit power,

√
EPU is the amplitude of the

PU signal yielding a transmitting power of EPU , and hi is
the channel gain between the PU and Ri , which accommo-
dates the effects of channel shadowing, channel loss and
fading, etc. ni (k) is the complex additive white Gaussian

noise (AWGN) with zero mean and variance �2
i , and it is

assumed that ni (k) and s(k) are mutually independent. H0
and H1 are the hypotheses of the PU signal being absent
and present, respectively. K is the time-bandwidth product
2TSW , where TS is the effective spectrum sensing interval
and W is the bandwidth of the licensed spectrum of interest.

Upon receiving signals in the first phase, each relay will
simply acts in an amplify-and-forward (AAF) manner, and
the signal received by the FC from Ri is

yi (k) =
√

Ei h̄i xi (k) + nFC(k),

=
{√

Ei h̄i ni (k) + nFC(k), H0,√
EPU Ei hi h̄i s(k) + ñFC,i (k), H1,

(2)

where h̄i is the channel gain between the FC and Ri , nFC(k)
is the complex AWGN noise at the FC with zero mean and
variance �2

FC, and Ei is the transmit power of Ri . Here,
Ei has two physical meanings. First, it represents the sup-
plied power that Ri can provide, for instance, in a battery-
supported scenario; second, it functions as an adjustable
parameter that can be controlled by the FC to optimize the
power allocation in the CR network [13].

As for the noise and signal components at the FC, again,
it is assumed that:

(1) nFC(k) is independent with both ni (k) and s(k);
(2) nFC(k) is statistically the same for each of the relays;
(3) the individual sensing observations are relayed to the

FC in a space orthogonal manner that the FC can easily
discern the M observations captured at different Ri .

Consequently, the equivalent noise variance of ñFC,i (k) is

�̃2
FC,i = Ei |h̄i |2�2

i + �2
FC, i ∈ {1, 2, . . . , M}. (3)

We can now write the received signals by the FC at time k
in a more compact form

y(k) =
{
P0 × n(k) + nFC(k)1, H0,

P1 × s(k)1 + ñFC(k), H1,
(4)

where the signals y(k) = [y1(k), y2(k), . . . , yM (k)]T are
received by the FC, n(k) = [n1(k), n2(k), . . . , nM (k)]T

are the noise components at the M cooperative relays,
ñFC(k) = [ñFC,1(k), ñFC,2(k), . . . , ñFC,M (k)]T are the equiv-
alently combined M noise components at the FC, and 1 is
the column vector of all ones. P0 and P1 are diagonal ma-
trices with p0 = [

√
E1h̄1,

√
E2h̄2, . . . ,

√
EM h̄M ]T and p1 =

[
√

EPU E1h1h̄1,
√

EPU E2h2h̄2, . . . ,
√

EPU EM hM h̄M ]T on
their diagonals, respectively. The aggregate spectrum sens-
ing observations at the FC are hence Y = [y(1), y(2), . . . ,
y(K )]T .

2.2. Energy measuring and soft fusing

Soft fusion of the collected sensing observations is carried
out at the FC. The FC first measures the received signal
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energies from the M relays,

Z = vecdiag(YT Y) =
{

Z0, H0,

Z1, H1,
(5)

where the function vecdiag(X) creates a column vector
whose elements are the main diagonal elements of ma-
trix X, test statistics Z0 = [Z0,1, Z0,2, . . . , Z0,M ]T and
Z1 = [Z1,1, Z1,2, . . . , Z1,M ]T are the received signal en-
ergies captured within the sensing interval TS and the
frequency bandwidth W.

The captured PU signal energies in test statistics Z1 can
be represented by the sum of K samples [14]

�i = 1

2W

K∑
k=1

|yi (k) − ñFC,i (k)|2

= EPU Ei |hi |2|h̄i |2TS

= �i N0,i K , (6)

where yi (k) and ñFC,i (k) are the received signal and noise
samples at time k under hypothesis H1, respectively. N0,i

is the equivalent one-sided noise power spectral density cor-
responding to the i-th relayed signal, �i is the PU signal-to-
noise ratio (SNR) of the i-th relayed signal. According to
(3), we can summarize the noise power densities as

N0,i = (Ei |h̄i |2�2
i + �2

FC)/W, i ∈ {1, 2, . . . , M}. (7)

When K is asymptotically large (e.g., larger than 100) [15],
we can well approximate the test statistics Z as normal dis-
tributed variables, according to the central limit theorem
(CLT), with means and variances [6]{�0,i = E[Z0,i ] = N0,i K ,

�2
0,i = V ar [Z0,i ] = N 2

0,i K .
H0, (8)

{�1,i = E[Z1,i ] = N0,i K + �i ,

�2
1,i = V ar [Z1,i ] = N 2

0,i K + 2N0,i�i .
H1. (9)

Based on Z, by allocating different weight coefficients to
them and combining them all, the FC fuses the M observa-
tions of Z into a global test statistic,

Zc =
M∑

i=1

�i Zi = xT Z, (10)

where x= [�1, �2, . . . , �M ]T is the weighting coefficients
satisfying ‖x‖2

2 = 1, �i � 0. The combining weight for the
signal from a particular SU represents its contribution to the
global decision. Consequently, the global test statistics Zc

has means and variances given by

Z̄c = E[Zc] =
{
xT u0, H0,

xT u1, H1,
(11)

V ar [Zc] =

⎧⎪⎪⎨⎪⎪⎩
M∑

i=1
�2

0,i�
2
i = xTR0x, H0,

M∑
i=1

�2
1,i�

2
i = xTR1x, H1,

(12)

where vectors of means u0 = [u0,1, u0,2, . . . , u0,M ]T

and u1 = [u1,1, u1,2, . . . , u1,M ]T ; R0 and R1 are di-
agonal matrices with d2

0 = [�2
0,1, �

2
0,2, . . . , �2

0,M ]T and

d2
1 = [�2

1,1, �
2
1,2, . . . , �2

1,M ]T on the diagonals, respectively.
It is worth noting that the statistics Z do not have to be
conditionally independent though hereby we utilize the in-
dependent case for the illustration purpose, i.e., with R0 and
R1 diagonal. If the elements of Z are correlated with each
other, then the covariance matrices R0 and R1 are generally
non-diagonal but the subsequent analysis will continue to
hold.

Given a global threshold � at the FC, the probabilities of
false alarm and detection in cooperative spectrum sensing
are, respectively,

PFA = Q

(
� − uT

0 x√
xTR0x

)
, PD = Q

(
� − uT

1 x√
xTR1x

)
, (13)

where Q(x) = ∫ +∞
x exp(−t2/2)dt/

√
2	.

3. Deflection coefficient maximization based
optimal fusion

3.1. Normal deflection coefficient maximization

For a cooperative spectrum sensing algorithm, the main
metric of sensing performance is either the maximization of
the detection probability for a target false alarm probability
or minimization of the false alarm probability for a target
detection probability. Setting the threshold � for a desired
probability of false alarm PFA,DES, we obtain the probability
of detection with the Neyman–Pearson criterion,

PD = Q

(
Q−1(PFA,DES)

√
xTR0x+ uT

0 x− uT
1 x√

xTR1x

)
, (14)

where Q−1(.) is the inverse function of Q(.).
From (11) and (12) it is clear that the weight vector x

plays an important role in determining the probability den-
sity functions (PDFs) of the global test statistic Zc under
both hypotheses. To measure the effects of the PDFs on the
detection performance, we introduce a normal deflection co-
efficient (NDC) [16]

d2
NDC(x) = (E[Zc|H1] − E[Zc|H0])2

V ar (Zc|H0)

= (HTx)2

xTR0x
, (15)

where H = [�1, �2, . . . , �M ]T . The deflection coefficient
d2

NDC(x)provides a good measure of the detection perfor-
mance, because the covariance matrix R0 under hypothesis
H0 is used to characterize the variance-normalized distance
between the centers of the two conditional PDFs of Zc un-
der H0 and H1. In the subsequent subsection, we will find
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the optimal soft fusion solutions based on the modified DC
(MDC), which employs R1 under hypothesis H1 to fulfill
the task of variance-normalization in (15).

The optimal weight vector xopt,NDC is defined as the one
that maximizes the distance d2

NDC(x),

xopt,NDC = arg max
x

d2
NDC(x). (16)

By solving the equation �d2
NDC(x)/�x= 0, we obtain

x∗
opt,NDC = x

TR0x

xTH
R−1

0 H

= 
NDCR
−1
0 H, (17)

where 
NDC is a scaling factor determined by x, but it does
not affect the detection performance in (14). By setting 
NDC
to 1 and normalizing each weighting coefficient, we obtain
the optimal weighting vector

xopt,NDC = x∗
opt,NDC/‖x∗

opt,NDC‖2. (18)

According to the Schwarz inequality, we obtain another
method in derivation of the optimal weight vector given
in (17),

[xT (u1 − u0)]2 = [xTR1/2
0 R

−1/2
0 (u1 − u0)]2

� (xTR0x)[(u1 − u0)TR−1
0 (u1 − u0)]

= (xTR0x)HTR−1
0 H, (19)

where the maximum of NDC is achieved as HTR−1
0 H, and

the equation is satisfied only when the optimal weights
x∗

opt,NDC for combining the M observations is

x∗
opt,NDC = �NDCR

−1
0 (u1 − u0)

= �NDCR
−1
0 H, (20)

where �NDC is a constant imposing no effect on d2
NDC(x) and

thus can be set to 1. So far, the validity of the derived optimal
weights x∗

opt,NDC is proved in (17) and (19), respectively.
The detection performance of the NDCM based coop-

erative sensing in the Neyman–Pearson framework is then
given by

PD = Q

⎛⎝Q−1(PFA,DES)
√
HTR−1

0 H−HTR−1
0 H√

HTR−2
0 R1H

⎞⎠ . (21)

For a given PFA,DES, PD is maximized in the sense that the
distance between the two PDFs of Zc under hypotheses H0
and H1 is enlarged to the maximum by xopt,NDC. In other
words, the derived weights xopt,NDC is optimal in terms
of NDCM. However, in the Neyman–Pearson framework,
xopt,NDC is only a sub-optimal solution, since the deflection
coefficient d2

NDC(x) is only part of the global optimization
function

J (x) = Q−1(PFA,DES)
√
xTR0x+ uT

0 x− uT
1 x√

xTR1x
, (22)

where J (x) is the optimization function obtained from (14).
Therefore, the maximization of the NDC might not reach the
upper bound of the detection probability, given a required
constant false alarm probability (CFAP). Nevertheless, to
the best of the authors’ knowledge, there is currently no
close-form solution of maximizing the function J (x) in the
literature.

The detection performance PD in (21) is actually a proba-
bility conditioned on the PU signal energy vector H, which
is a composite random variable vector determined by chan-
nel gains hi and h̄i . Therefore, the statistically averaged
PD is

P̄D =
∫

G⊂RM+

PD(X)pH(X)dX, (23)

where pH(.) is the joint PDF of the multi-variable vector H,
G is the subset of RM+ that contains all H vectors leading
to the H1 decision, and RM+ is the positive M-dimensional
vector space.

3.2. Modified deflection coefficient maximization

In this subsection, we investigate the MDCM based op-
timal weights for the soft fusion at the FC. Note that if R0
in (15) is substituted by R1, we can easily obtain the MDC,
which is first defined in [9] as

d2
MDC(x) = (E[Zc|H1] − E[Zc|H1])2

V ar (Zc|H1)

= (HTx)2

xTR1x
. (24)

The derivations of optimal weights in the previous subsec-
tion still hold except that in terms of MDCM, we have

xopt,MDC = R−1
1 H. (25)

The MDCM in (24) is actually a general Rayleigh quotient
problem, where

d2
MDC(x) = R(RH,R1;x)

�
xT RHx
xTR1x

. (26)

The optimal weight vector xopt,MDC is defined as the one
that maximizes R(RH,R1;x)

xopt,MDC = arg max
x

R(RH,R1;x). (27)

The generalized Rayleigh quotient R(RH,R1;x) in (26) can
be reduced to the Rayleigh quotient R(D, CTx) through
the transformation D = C−1RHC−T [17], where C is the
Cholesky decomposition of matrix R1. It is well known that
the Cholesky decomposition of R1 is a decomposition of the
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symmetric, positive-definite matrix R1 into a lower triangu-
lar matrix and the transpose of the lower triangular matrix,

R1 = CCT . (28)

Now we obtain the Rayleigh quotient as

R(RH,R1;x) = R(D, CTx)

= -
T D-
-T-

, (29)

where - = CTx. Notice that R(A, x′) = R(A, x), for x′ =
cx, ∀c � 0, therefore we will solve for - with a unit norm
‖-‖2 = 1,

max -T D-

s.t. -T-= 1. (30)

By using the scalar Lagrange multiplier �L ∈ R, we obtain

L(-) = -T D-+ �L (-T-− 1), (31)

where by solving �L(-)/�-=0, we can easily find the opti-
mal weight vector -opt,MDC as the eigenvector correspond-
ing to the largest eigenvalue of D, i.e., eigmax (D) = C−1H,
where function eigmax (D) returns the unit eigenvector of the
maximum eigenvalue belonging to D. Now, we can obtain
the optimal weights xopt,MDC = R−1

1 H, which is identical
to the result in (25) and the solution in (61) of [9].

The normalized optimal weights xopt,MDC maximizes the
corresponding probability of detection in terms of MDCM,
which is given as

P ′
D = Q

⎛⎝Q−1(PFA,DES)
√
HTR−2

1 R
−1
0 H−HTR−1

1 H√
HTR−1

1 H

⎞⎠ ,

(32)

where P ′
D is still conditioned on the PU signal energies H

and the statistically averaged probability of detection P̄ ′
D can

be easily obtained, similar to (23).

4. Implementation

4.1. Optimal global threshold setting method

In previous sections, the global threshold at the FC is
determined in the Neyman–Pearson framework, based on the
given desired probability of false alarm. In this subsection,
we derive the optimal global threshold in accordance with
Bayesian cost-effectiveness.

The philosophy behind setting the optimal threshold is
that the a priori knowledge of the received signal under
both hypotheses H0 and H1 can be exploited in setting
the threshold dynamically, whereas in the Neyman–Pearson
framework the threshold is set to be fixed, only depending on
the statistical properties of the noise under hypothesis H0.

Since the Neyman–Pearson threshold does not take into ac-
count the PU signal strength, the probability of false alarm
is subject to a lower bound determined by the desired prob-
ability of false alarm, which can not be overcome no matter
how large the SNR is. As for the optimal threshold, the prob-
ability of false alarm can be significantly improved, because
the threshold is dynamically adjusted according to the cur-
rent PDFs of the received signal under both hypotheses. In
other words, if the distance between the centers of the two
PDFs under H0 and H1 is large, an intuitive way is to set
the threshold relatively large to suppress the false alarm and
in the meantime result in no miss detection of the PU signal.

For ED based cooperative spectrum sensing, we define
the optimal global threshold at the FC is the one capable of
minimizing the simplified Bayesian risk

R= E[C]

= CFA P(H0)PFA + CMISS P(H1)PMISS, (33)

where C is the system cost, PMISS=1− PD is the probability
of miss detection, and CFA and CMISS are the system costs
of false alarm and miss detection, respectively. It is worth
noting that as a simplified Bayesian risk, the costs of cor-
rectly identifying PU signal and the spectrum opportunity
are both set to 0.

To further simplify the optimality criterion and with-
out loss of generality, we set both of CFA P(H0) and
CMISS P(H1) to 1 and consequently the Bayesian risk R
shrinks to a detection error function F = PFA + PMISS [18].
The optimal threshold �opt for minimizing F is

�opt = arg min
�

F(�)

= arg min
�

(PF A(�) + PMISS(�)). (34)

By solving the equation �F/�� = 0 and referring to (13),
we obtain

1

�0
exp

(
− (�opt − 0)2

2�2
0

)
= 1

�1
exp

(
− (�opt − 1)2

2�2
1

)
,

(35)

where �0 =
√
xTR0x, �1 =

√
xTR1x, 0 = xT u0,

1 = xT u1.

Eq. (35) means that in fact we choose the intersection
of the two Gaussian distributions of the global test statistic
Zc under hypotheses H0 and H1 as the optimal threshold.
Taking the natural logarithm of both sides of (35) and rear-
ranging the terms, we can obtain the optimal threshold by
solving

(�2
1 − �2

0)�2
opt − 2(0�

2
1 − 1�

2
0)�opt

+ 2
0�

2
1 − 2

1�
2
0 − 2�2

0�
2
1 ln

(
�1

�0

)
= 0. (36)
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Since (36) is a second order polynomial equation that can
be easily solved, we obtain

�opt = 1�2
0 − 0�2

1 + �0�1
√
C

�2
0 − �2

1

, (37)

where C= (0 − 1)2 + 2(�2
1 − �2

0) ln(�1/�0).
So far, the optimal threshold in soft fusion schemes for

minimizing the error detection function F is obtained. Note
that according to (13), even as the optimal threshold �opt is
a function of the optimal weight xopt,NDC, the scaling factor

NDC or �NDC imposes no impact on the performance of
PFA and PD, and therefore we can safely set them to 1.

4.2. Recursive estimate algorithm for weight-setting

The optimal weighting vector in (18) is mainly deter-
mined by the signal energy quantities {EPU |hi |2}M

i=1, under
the assumption that the channel gains h̄i , the relay power
Ei , the noise variances �2

i and �2
FC are readily available for

the FC before the sensing operation begins. These assump-
tions are justified by the fact that each SU can perform noise
power estimation between the consecutive sensing intervals,
and the channel gains between the SUs and the FC can also
be obtained accurately due to some pilot-aided channel es-
timations performed at the FC. Additionally, we assume the
channel coherence time of h̄i is much larger than the chan-
nel estimation period, such that the FC could adaptively es-
timate the channel gains from the SUs with small overhead.

With the above assumptions, the parameters we need to
identify for setting the weight vector are only the signal en-
ergy quantities {EPU |hi |2}M

i=1 for the NDCM method. As
for MDCM, an additional estimation of R1 is also required.
To obtain PU signal energies hidden in the raw sensing data
of the cooperative SUs, a simple yet effective method is em-
ployed hereafter. By introducing records of the PU’s behav-
iors, the current sensing data Z is categorized and stored in
either a Presence or an Absence matrix for future reference,
according to the current global decision. In other words, if
it is decided that the current data Z contains the PU signal
energy, it will be stored in an M-by-L Presence matrix Z(P)

in a first-in-first-out (FIFO) manner; otherwise it is stored in
an M-by-L Absence matrix Z(A) and meanwhile a zero col-
umn vector is pushed into Z(P) which means no PU signal
is present at the current time. The estimates of EPU |hi |2 for
the current statistic Zc, j are calculated via simple arithmetic
averaging operations

ẼPU |h̃i, j |2 = 1

Ei |h̄i, j−1|TS

1

L

j−1∑
m= j−L

|Z (P)
i,m − Z (A)

i,m |

= L − 1

L
�(P)

i, j−1 +
|Z (P)

i, j−1 − Z (A)
i, j−1|

L Ei |h̄i, j−1|TS
, (38)

where j is the time index of the current sensing data Z, L
is the reference matrix depth, and �(P)

i, j is the estimate of

EPU |hi |2 at instant j. An implicit assumption behind (38) is
that the channels between the PU and the M SUs are slowly
varying, which means the length L should be set sufficiently
shorter than the channel varying interval.

Similarly, if the variances of the test statistics Z under
H0 need to be estimated at time j, we have

�̃
2
0,i, j = 1

L

j−1∑
m= j−L

|(Z (A)
i,m )2 − ũ2

0,i, j |

= L − 1

L
�(A)

i, j−1 + 1

L
|(Z (A)

i, j−1)2 − u2
0,i, j−1|, (39)

where �(A)
i, j−1 = �̃

2
0,i, j−1, ũ0,i, j = (1/L)

∑ j−1
m= j−L Z (A)

i,m .

Note that practically the matrix depth L in (39) can be set
quite much larger than that in (38) to achieve more accurate
estimation of the test statistics’ variances under H0.

With the estimated PU signal strength vector H̃ and test

statistic variance {�̃2
0,i, j }M

i=1, we can construct the estimated

diagonal covariance matrix R̃1, according to (9), to set the
weights for the MDCM method. It is obvious that the esti-
mate algorithm for weight setting in MDCM is more com-
plex than that in NDCM.

4.3. Complexity analysis

Practically, the M cooperative SUs can work in either
AAF or decode-and-forward (DAF) manner. Undoubtedly,
the AAF scheme is much more complex than the DAF
scheme and requires more control channel bandwidth, be-
cause the SUs operating in DAF will only relay the mea-
sured energies of the received signals to the FC. However,
the AAF scheme has some potential benefits in improving
the sensing performance by employing some signal process-
ing techniques at the FC on the basis of the received signal
samples, e.g., the BCED in [12]. In order to relay these re-
ceived signal samples or measured signal energies, quanti-
zation operations need to be performed at each SU no matter
either AAF or DAF scheme is adopted for relaying. Since
investigating the impact of SNR loss in the quantization op-
eration is beyond the scope of this paper, we still use the
unquantized samples for signal representations in the previ-
ous derivations.

The system complexity of the proposed cooperative sens-
ing scheme is comprised of two parts:

(1) The control channel bandwidth WCTRL required for re-
laying the sensing observations.

(2) The required memory units of the recursive estimate al-
gorithm for setting the optimal fusion weights.

Within each sensing interval TS , there are K samples at
each SU to be conveyed to the FC over the control channel.
Suppose directional antennas are used at the SUs and the FC
and each SU quantizes the received signal samples with N
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Table 1. Complexity of the proposed optimal fusion scheme.

K Absolute
WCTRL (kHz)

Relative
WCTRL(%)

100 200 2
200 400 4
400 800 8

bits/sample, the total number of sensing bits is N K for each
SU. Because of the cooperation between the SUs and the FC,
high order modulation schemes, e.g., QPSK and 16QAM,
can be utilized on the control channel. Consequently, we
have the required control channel bandwidth as

WCTRL = 1

�
Rb = K N

�TR
= 2TSW N

�TR
, (40)

where � is the spectral efficiency of the modulation scheme,
Rb is the bit rate, and TR is the time used by one SU to relay
its sensing observations. Suppose W = 10 MHz, TS = 10 us,
TR = 1ms, N = 8, and � = 4 (for 16QAM with Nyquist
minimum bandwidth), the required WCTRL is given in
Table 1.

The required WCTRL in (40) is applied to the narrowband
control channel case. An alternative to the narrowband con-
trol channel is to relay the sensing samples via low power
UWB signaling [19,20], which possesses ample bandwidth
for the AAF scheme. If the narrowband control channel has
a very stringently limited bandwidth, the AAF can be eas-
ily reduced to the DAF scheme and the previous methods of
deriving the optimal weights remain valid.

As for the proposed recursive estimate algorithm, it is
fairly easy to implement. The number of required memory
units for storing the sensing data is determined by the num-
ber of cooperative SUs M and the matrices depth L. Since
the estimate algorithm is a simple arithmetical averaging op-
eration over a finite observations, the computation load is
very low and is linearly proportional to the product 2M L .

5. Simulations and discussions

In this section, the proposed optimal cooperative spec-
trum sensing scheme is evaluated via simulations. The basic
parameters are fixed and set as TS = 10 us, W = 10 MHz,
M = 10, and L = 16. Each simulation consists of 105 it-
erations. The channel gains between the M SUs and the
target PU are generated according to a complex normal
distribution, which suggests that the PU signal is undergo-
ing independent and identically distributed (i.i.d) Rayleigh
fading before reaching the M SUs. In simulation, we sup-
pose that the variances {�2

0,i }M
i=1 are distributed around an

average level �2, with a deviation d, which is normally dis-
tributed as N (0, D�2). D indicates the location difference
factor in the CR network and is set to 20% in simulations.

Fig. 1. ROC performance of the proposed optimal fusion scheme.

For simplicity, we assume that the PU signal power EPU

and the channel gains {hi } have constant values within each
sensing interval TS , provided that TS was sufficiently small.
This assumption is reasonable and can be encountered in a
realistic scenario, where the variation of the dynamic radio
environment is reflected in the channel gains’ variation over
a relatively large time-scale.

Fig. 1 demonstrates the receiver operating characteristics
(ROC) of the proposed cooperative sensing scheme. It is
found that the NDCM and MDCM based soft fusions have
almost the same theoretical performance, whereas practi-
cally the performance of NDCM is slightly better than that
of MDCM, because the MDCM solution introduces esti-
mates of the PU signal strength and test statistic variance
into the estimated covariance matrix simultaneously. As ex-
pected and shown, given the same number of SUs, the the-
oretical optimal weights xopt,NDC outperform the estimated
ones, with non-trivial difference. This performance degrada-
tion is resulted by the absence of a priori knowledge of the
PU signal and noise variance, because the task of extracting
the PU signal energy from the noise in a low SNR environ-
ment is extremely challenging. However, this performance
deterioration can be sufficiently compensated by increasing
the number of cooperative SUs and obtaining an optimal L
which is adaptively adjusted according to the channel vari-
ation speed. Compared to the MRC and EGC schemes, the
proposed optimal fusion scheme improves the cooperative
sensing performance significantly. Additionally, with the in-
crease of SNR, the performance of the estimated weights
effectively approaches that of the theoretical weights.

Fig. 2 gives the detection error probability in accordance
with the proposed optimal global threshold setting method.
We only use the NDCM based soft fusion for performance
comparisons of the Neyman–Pearson threshold and the op-
timal threshold. As shown, the proposed optimal threshold
is capable of reducing the detection error probability when
the average SNR is increased, whereas the Neyman–Pearson
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Fig. 2. Detection error probabilities of the proposed optimal fusion
scheme.

thresholds (shown as thresholds 1 and 2 in Fig. 2) can only
approach the desired PFA,DES of 0.1 and 0.01 no matter
how large the SNR is increased. The superiority of the pro-
posed optimal threshold is achieved by utilizing information
of the PU signal in setting the threshold dynamically. With
the help of the optimal threshold, the chance of capturing
the spectrum opportunities is increased and the chance of
detecting the PU signal is also maximized. Moreover, the
proposed NDCM based weighting scheme is also verified
to outperform the MRC and EGC schemes for both theo-
retical and estimated weights when the optimal threshold is
used.

6. Conclusions

In this paper, deflection coefficient maximization criterion
based optimal soft fusion scheme is proposed for cooper-
ative spectrum sensing. In terms of DCM, we give close-
form mathematical solutions to the NDCM and MDCM
problems for improving the overall detection probability in
the CR network. To implement the developed scheme, an
optimal global threshold setting strategy and a recursive
weight setting scheme are also proposed. As illustrated by
our analysis and simulations, the proposed optimal soft fu-
sion scheme outperforms the conventional MRC and EGC
schemes and yields significant improvements in spectrum
sensing.
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